• 제목/요약/키워드: Biped Control

Search Result 180, Processing Time 0.045 seconds

A Study to acquire optimal gait control parameter based by analysing human walking pattern (인간의 보행 패턴 분석을 통한 최적의 보행 제어 인자 추출에 대한 연구)

  • Ha, Seung-Seok;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.113-116
    • /
    • 2007
  • 본 논문은 인간의 보행에 대한 에너지 분석을 통해 biped robot의 설계 단계에서 최적의 보행제어인자를 추출하기 위한 연구이다. 에너지 효율이 높은 보행인자 값을 얻기 위해 인간의 보행영상을 획득하고, 획득된 영상을 5-link biped robot model로 근사화하여 dynamics와 energy를 분석한다. 또한 link의 길이 비율과 link의 무게, link의 관성의 변화를 통해 5-link로 근사화된 인간의 보행 효율과 기구적 요소 사이의 민감도를 판단할 수 있다. 인간과 자유도가 다른 biped robot이 인간과 같은 보행을 위하여 설계단계에서 고려되어야할 중요한 기구적 요소가 이러한 민감도를 통해 구해진다.

  • PDF

Design and Implementation of a Bird Type Biped Robot for Entertainment (엔터테인먼트용 조류형 2족 보행 로봇의 설계 및 구현)

  • Kim Dong-Jin;Yu Seung-Hwan;Shen Yun-De;Jang Seung-Ik;Kee Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.38-45
    • /
    • 2005
  • In this paper, a bird type biped robot for entertainment controlled by R/C servo motors, is built using the embedded RTOS (Real Time Operating System). ${\mu}C/OS-II$ V2.00 is used fur RTOS and the board 80C196KC for main CPU. A control algorithm of R/C servo motors is proposed on ${\mu}C/OS-II's$ preemptive and deterministic property without any extra PWM module. The realized biped robot has 19DOF, that is, 12DOF for both legs, 6DOF for both arms and 1DOF for neck. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and the simulation has been done by ADAMS.

Mechanism and Motion of New Biped Leg Machine

  • Lim, Hun-Ok;Ogura, Yu;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1922-1927
    • /
    • 2005
  • This paper describes the mechanism of a new biped machine capable of doing human-robot cooperation work. The biped machine, WABIAN-2 is made of two seven degrees of freedom (DOF) legs, a two DOF waist and no DOF trunk. Its leg system consists of two three DOF ankles, two one DOF knees and two three DOF hips to deal with various walk motions. Its height is about 1.2[m], and its weight is 40[kg]. It is designed with large movable range as a human. Also, a knee stretch walk pattern generation for the biped machine to perform natural walk like a human is discussed in this paper. Its leg motion is compensated by using the motion of its waist. Basic knee stretch walk experiments using WABIAN-2 are conducted on the plane, and the validity of its mechanism and walk pattern generator is verified.

  • PDF

Development of a Biped Walking Robot

  • Kim, Yong-Sung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2350-2355
    • /
    • 2005
  • In this paper, we introduce biped walking robot which can static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and 22 RC servo motors are used to actuate. Before made an active algorithm, we generated the motions of robot with the motion simulator which developed using by C language. The two dimension simulator is Based on the inverse kinematics and D-H transform. The simulator implements various motions as inputted the ankle's trajectory. Also we developed a simulator which is applied the principle of inverted pendulum to acquires the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle and pelvis when the robot lifts up its one side leg during the working. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which connected with laptop computer by serial cable.

  • PDF

The Comparison of Postural Stability Analysis of Biped Robot IWR-III

  • Kim, S.B.;Park, S.H.;Kim, J.T.;Kim, Jin.G.;Lee, B.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.2-162
    • /
    • 2001
  • This paper presents the stability analysis of a biped robot IWR-III. We use a foot-rotation indicator(FRI) concept to reveal the degree of stability. The foot rotation can be a barometer of postural instability, which should be carefully treated in implementing a dynamically stable walk and avoided altogether in performing a statically stable walk. The conventionally mentioned zero moment point(ZMP) criterion may not be sufficient to express the stability of a biped robot. ZMP equation needs an assumption that the supporting foot is fixed firmly to the ground during the walking. Therefore, applying the FRI concept is more desirable when a biped robot is falling down ...

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.267-267
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR peformed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Modeling for The Dynamics of 10 D.O.F Biped Robot (10자유도 이족 보행로봇 운동식의 모텔링)

  • 최형식;이호식;박용헌;전대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.343-343
    • /
    • 2000
  • The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. Using this, we developed a new type of 10 D.O.F biped robot. The dynamics model of the biped robot is investigated in this paper. In the modeling process, the robot dynamics are expressed in the joint coordinates using the Euler-Lagrange equation. Then, they are converted in to the sliding joint coordinates, and joint torques are expressed in the force along the sliding direction of the ball screw. To test modeling of the robot, a computer simulation was performed.

  • PDF

Design and Implementation of Entertainment Biped Robot using RTOS and R/C Servo Motor (RTOS와 R/C 서보 모터를 이용한 엔터테인먼트 이족 보행 로봇 설계 및 구현)

  • Kim, Dong-Jin;Kim, Jeong-Gi;Gi, Chang-Du
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.998-1001
    • /
    • 2003
  • In this paper, a entertainment biped robot controlled by R/C servo motors is built using the embedded RTOS (Real Time Operating System). uC/OS-II V2.00 is used for RTOS and control algorithm of R/C servo motors is proposed based on uC/OS-II's preemptive and deterministic property without any extra PWM module. The realized biped robot has 19 DOF, and a board 80C196KC as main CPU. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and ADAMS is used for simulation.

  • PDF

Avoiding Inter-Leg Collision for Data-Driven Control (데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법)

  • Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.23-27
    • /
    • 2017
  • We propose an inter-leg collision avoidance method that compensates the disadvantage of the data-driven biped control method. The data-driven biped control technique proposed by Lee et. al [1] sometimes generates the movement that the two legs intersect with each other while walking, which can not be realized in walking of a real person or a biped robot. The proposed method changes the angle of the swing hip so that the swing foot can move inward only after passing the stance foot. This process introduces an additional angle adjustment algorithm to avoid collisions with the stance leg to the original feedback rule of the stance hip. It generates a stable walking simulation without any inter-leg collisions, by adding minimal changes and additional calculations to the existing controller behavior.

Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series (푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성)

  • Park, Ill-Woo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.