• 제목/요약/키워드: Biosynthetic pathway

검색결과 227건 처리시간 0.023초

Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis

  • Bunsangiam, Sakaoduoen;Sakpuntoon, Varunya;Srisuk, Nantana;Ohashi, Takao;Fujiyama, Kazuhito;Limtong, Savitree
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.292-300
    • /
    • 2019
  • IAA biosynthetic pathways in a basidiomycetous yeast, Rhodosporidiobolus fluvialis DMKU-CP293, were investigated. The yeast strain showed tryptophan (Trp)-dependent IAA biosynthesis when grown in tryptophan supplemented mineral salt medium. Gas chromatography-mass spectrometry was used to further identify the pathway intermediates of Trpdependent IAA biosynthesis. The results indicated that the main intermediates produced by R. fluvialis DMKU-CP293 were tryptamine (TAM), indole-3-acetic acid (IAA), and tryptophol (TOL), whereas indole-3-pyruvic acid (IPA) was not found. However, supplementation of IPA to the culture medium resulted in IAA peak detection by high-performance liquid chromatography analysis of the culture supernatant. Key enzymes of three IAA biosynthetic routes, i.e., IPA, IAM and TAM were investigated to clarify the IAA biosynthetic pathways of R. fluvialis DMKU-CP293. Results indicated that the activities of tryptophan aminotransferase, tryptophan 2-monooxygenase, and tryptophan decarboxylase were observed in cell crude extract. Overall results suggested that IAA biosynthetic in this yeast strain mainly occurred via the IPA route. Nevertheless, IAM and TAM pathway might be involved in R. fluvialis DMKU-CP293.

Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli

  • Pranawidjaja, Stephanie;Choi, Su-In;Lay, Bibiana W.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.880-886
    • /
    • 2015
  • Bacterial heme was produced from a genetic-engineered Escherichia coli via the porphyrin pathway and it was useful as an iron resource for animal feed. The amount of the E. coli-synthesized heme, however, was only few milligrams in a culture broth and it was not enough for industrial applications. To analyze heme biosynthetic pathways, an engineered E. coli artificially overexpressing ALA synthase (hemA from Rhodobacter sphaeroides) and pantothenate kinase (coaA gene from self geneome) was constructed as a bacterial heme-producing strain, and both the transcription levels of pathway genes and the intermediates concentrations were determined from batch and continuous cultures. Transcription levels of the pathway genes were not significantly changed among the tested conditions. Intracellular intermediate concentrations indicated that aminolevulinic acid (ALA) and coenzyme A (CoA) were enhanced by the hemA-coaA co-expression. Intracellular coproporphyrinogen I and protoporphyrin IX accumulation suggested that the bottleneck steps in the heme biosynthetic pathway could be the spontaneous conversion of HMB to coproporphyrinogen I and the limited conversion of protoporphyrin IX to heme, respectively. A strategy to increase the conversion of ALA to heme is discussed based on the results.

Lipid A as a Drug Target and Therapeutic Molecule

  • Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.510-516
    • /
    • 2015
  • In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.

Production of Bacterial Quorum Sensing Antagonists, Caffeoyl- and Feruloyl-HSL, by an Artificial Biosynthetic Pathway

  • Kang, Sun-Young;Kim, Bo-Min;Heo, Kyung Taek;Jang, Jae-Hyuk;Kim, Won-Gon;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2104-2111
    • /
    • 2017
  • A new series comprising phenylacetyl-homoserine lactones (HSLs), caffeoyl-HSL and feruloyl-HSL, was biologically synthesized using an artificial de novo biosynthetic pathway. We developed an Escherichia coli system containing artificial biosynthetic pathways that yield phenylacetyl-HSLs from simple carbon sources. These artificial biosynthetic pathways contained the LuxI-type synthase gene (rpaI) in addition to caffeoyl-CoA and feruloyl-CoA biosynthetic genes, respectively. Finally, the yields for caffeoyl-HSL and feruloyl-HSL were $97.1{\pm}10.3$ and $65.2{\pm}5.7mg/l$, respectively, by tyrosine-overproducing E. coli with a $\text\tiny{L}$-methionine feeding strategy. In a quorum sensing (QS) competition assay, feruloyl-HSL and p-coumaroyl-HSL antagonized the QS receptor TraR in Agrobacterium tumefaciens NT1, whereas caffeoyl-HSL did not.

Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces spectabilis ATCC 27741

  • Jo, You-Young;Kim, Sun-Hee;Yang, Young-Yell;Kang, Choong-Min;Sohng, Jae-Kyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.906-911
    • /
    • 2003
  • The function of genes related to spectinomycin biosynthesis (spcD, speA, speB, spcS2) from Streptomyces spectabilis ATCC 27741, a spectinomycin producer, was analyzed. Each gene was subcloned from a spectinomycin biosynthetic gene cluster and overexpressed in E. coli BL21 (DE3) using pET vector. After incubating each purified protein with its possible substrates, the final products were analyzed using high-performance liquid chromatography (HPLC). From these results, spcD, speA, and speB have been identified to be dTDP-glucose synthase, myo-inositol monophosphatase, and myo-inositol dehydrogenase, respectively. In addition, the results suggest that the spcS2 gene product functions downstream of the speB gene product in the biosynthetic pathway of spectinomycin. Taken together, the present study elucidates the early steps of the biosynthetic pathway for 6-deoxyhexose (6-DOH) part (actinospectose) and aminocyclitol part (actinamine) of spectinomycin.

Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production

  • Tang, Wei;Wang, Yue;Zhang, Jun;Cai, Yali;He, Zengguo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.507-517
    • /
    • 2019
  • Rhodotorula is a group of pigment-producing yeasts well known for its intracellular biosynthesis of carotenoids such as ${\beta}-carotene$, ${\gamma}-carotene$, torulene and torularhodin. The great potential of carotenoids in applications in food and feed as well as in health products and cosmetics has generated a market value expected to reach over $2.0 billion by 2022. Due to growing public concern over food safety, the demand for natural carotenoids is rising, and this trend significantly encourages the use of microbial fermentation for natural carotenoid production. This review covers the biological properties of carotenoids and the most recent findings on the carotenoid biosynthetic pathway, as well as strategies for the metabolic engineering methods for the enhancement of carotenoid production by Rhodotorula. The practical approaches to improving carotenoid yields, which have been facilitated by advancements in strain work as well as the optimization of media and fermentation conditions, were summarized respectively.

Construction of Artificial Biosynthetic Pathways for Resveratrol Glucoside Derivatives

  • Choi, Oksik;Lee, Jae Kyoung;Kang, Sun-Young;Pandey, Ramesh Prasad;Sohng, Jae-Kyung;Ahn, Jong Seog;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.614-618
    • /
    • 2014
  • Resveratrol, which is a polyphenolic antioxidant, is dose-dependent when used to provide health benefits, to enhance stress resistance, and to extend lifespans. However, even though resveratrol has therapeutic benefits, its clinical therapeutic effect is limited owing to its low oral bioavailability. An Escherichia coli system was developed that contains an artificial biosynthetic pathway that produces resveratrol glucoside derivatives, such as resveratrol-3-Oglucoside (piceid) and resveratrol-4'-O-glucoside (resveratroloside), from simple carbon sources. This artificial biosynthetic pathway contains a glycosyltransferase addition (YjiC from Bacillus) with resveratrol biosynthetic genes. The produced glucoside compounds were verified through the presence of a product peak(s) and also through LC/MS analyses. The strategy used in this research demonstrates the first harnessing of E. coli for de novo synthesis of resveratrol glucoside derivatives from a simple sugar medium.

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1995년도 한국생물과학협회 학술발표대회
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

Determination of Biosynthetic Pathway of Decursin in Hairy Root Culture of Angelica gigas

  • Ji, Xiuhong;Huh, Bum;Kim, Soo-Un
    • Applied Biological Chemistry
    • /
    • 제51권4호
    • /
    • pp.258-262
    • /
    • 2008
  • To establish the biosynthetic pathway of decursin in Angelica gigas Nakai, feeding experiment with stable isotope-labeled precursors were conducted. Umbelliferone and decursin were labeled with deuterium at C-3. The umbelliferone, the decursin, and other commercially available putative precursors, L-phenylalanine-ring-$d_5$ and trans-cinnamic acid-$d_7$, were fed to the hairy root culture of A. gigas. Each deuterated compound was incorporated into decursinol, decursinol angelate, and decursin as determined by mass spectrometric analysis. These findings confirmed the coumarin biosynthesis pathway sequence is composed of phenylalanine, cinnamic acid, umbelliferone, decursinol, and decursin.

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.