In the modern society, psychological diseases and impulsive crimes due to stress are occurring. In order to reduce the stress, the existing treatment methods consisted of continuous visit counseling to determine the psychological state and prescribe medication or psychotherapy. Although this face-to-face counseling method is effective, it takes much time to determine the state of the patient, and there is a problem of treatment efficiency that is difficult to be continuously managed depending on the individual situation. In this paper, we propose an artificial intelligence emotion management system that emotions of user monitor in real time and induced to a table state. The system measures multiple bio-signals based on the PPG and the GSR sensors, preprocesses the data into appropriate data types, and classifies four typical emotional states such as pleasure, relax, sadness, and horror through the SVM algorithm. We verify that the emotion of the user is guided to a stable state by providing a real-time emotion management service when the classification result is judged to be a negative state such as sadness or fear through experiments.
This study was performed to extract and analyze the biosignals to find the relationship between the level of anesthesia and the variations of physiological parameters during epidural anesthesia. Seven male and twenty female patients(ages from 45 to 70 years old) were participated for the experiment, and ECGs, PPGs, SKTs, SCRs were obtained during anesthesia. As results, the HF/LF ratios of HRV were decreased after the injection anesthetics. For skin temperatures, values measured from the palm was reduced and the temperatures from four channels, measured from armpit through the right side of the body, were increased. SCRs were decreased for all channels after the injection of anesthetics. However the heart rate and PPGs showed no significant changes. It was concluded that the injection of anesthetics result the changes in biosignals, and it could be explained by the degree of the sympathetic and/or parasympathetic nerve activities. Results of this study could provide the valuable information for the estimation of level for the spinal and general anesthesia, and could be extended to the development of a system which could quantify the level of anesthesia.
In this paper, a new automatic classification method for the normal EEC and schizophrenia EEC using hidden Markov model(HMM) is proposed. We used the feature parameters which are the variance for statistical stationary interval of the EEC and power spectrum ratio of the alpha, beta, and theta wave. The results were shown that high classification accuracy of 90.9% in the case of normal person, and 90.5% in the case of schizophrenia patient. It seems that proposed classification system is more efficient than the system using complicate signal processing process. Hence, the proposed method can be used at analysis and classification for complicated biosignal such as EEC and is expected to give considerable assistance to clinical diagnosis.
The emergence and resurgence of novel respiratory infectious diseases since the turn of the millennium, including SARS, H1N1 flu, MERS, and COVID-19, have posed a significant global health threat. Efforts to combat these threats have involved various approaches, however, continued research and development are crucial to prepare for the possibility of emerging viruses and viral variants. Direct detection methods for viral pathogens include molecular diagnostic techniques and immunodiagnostic methods, while indirect diagnostic methods involve detecting changes in the condition of infected patients through imaging diagnostics, gas analysis, and biosignal measurement. Molecular diagnostic techniques, utilizing advanced technologies such as gene editing, are being developed to enable faster detection than traditional PCR methods, and research is underway to improve the efficiency of diagnostic devices. Diagnostic technologies for infectious diseases continue to evolve, and several key trends are expected to emerge in the future. Automation will facilitate widespread adoption of rapid and accurate diagnostics, portable diagnostic devices will enable immediate on-site diagnosis by healthcare professionals, and advancements in AI-based deep learning diagnostic models will enhance diagnostic accuracy.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.4
/
pp.2170-2178
/
2014
In this paper, electroencephalographic (EEG) signal of one among subjects measured biosignal with visual evoked stimuli inducing the concentration was analyzed to detect the changes in the attention status during attention task fulfillment from January to February, 2011. The independent component analysis (ICA) was applied to EEG signals to isolate the attention related innate source signal within the brain and Electroculogram (EOG) artifact from measured EEG signals at the scalp. The consecutive accumulation of short time Fourier transformed (STFT) attention source signal with excluded EOG artifact can enhance the regular depiction of EPOCH graph and spectral color map representing time-varying pattern. The extracted attention indices associated with somatosensory rhythm (SMR: 12-15 Hz), and theta wave (4-7 Hz) increase marginally over time. Throughout experimental observation, the ICA with STFT can be used for the assessment of participants' status of attention.
With the convergence of ubiquitous networking and medical technologies, ubiquitous healthcare(U-Healthcare) service has come in our life, which enables a patient to receive medical services at anytime and anywhere. In the u-Healthcare environment, intelligent real-time biosignal aquisition/analysis techniques are inevitable. In this study, we propose a motion artifact cancelation method in portable photoplethysmography(PPG) signal aquisition using an accelerometer and an adaptive filter. A preliminary experiment represented that the component of the pedestrian motion artifact can be found under 5Hz in the spectral analysis. Therefore, we collected PPG signals under both simulated conditions with a motor that generates circular motion with uniform velocity (from 1 to 5Hz) and a real walking condition. We then reduced the motion artifact using a recursive least square adaptive filter which takes the accelerometer output as a noise reference. The results showed that the adaptive filter can remove the motion artifact effectively and recover peak points in PPG signals, which represents our method can be useful to detect heart rate in real walking condition.
Objectives: The purpose of this study was to identify the needs of bio-signal devices for the diagnosis, assessment, and analysis of neurocognitive disorder in Korean medicine (KM) hospitals and clinics. Methods: A questionnaire was developed to survey the current status of medical device use, and diagnosis and interventions for patients with cognitive disorders in KM hospitals and clinics. November 11~December 2, 2019, 114 responses (71.9% completed) were collected by internet-based questionnaires from the members of the Korean society of Oriental Neuropsychiatry. Results: The clinical requests were in the descending order of hematology analyzer, ultrasound imaging system, and electroencephalography among the 15 most commonly used devices of which research would support for their clinical usability. The biosignal-based devices showed the highest research demands for patients with mild cognitive impairment rather than more severe stages of cognitive impairment. Prevention rather than diagnosis, or several treatment regimens was the strongest clinical area of the KM for patients with neurodegenerative cognitive impairment. Many responded that five to 10 minutes of test duration and 20,000 won to 30,000 won of cost would be appropriated for a new device to be developed. Conclusions: There were strong demands for the development of bio-signal devices for neurocognitive disorders among the KM doctors. Specifically, it showed high needs for the technology that can be used in the prevention area of cognitive disorders. Additionally, new medical devices to assess cognitive functions and to obtain KM pattern-related information were the high needs.
Counseling is not merely a conversation it is a critical meeting aimed at solving problems. For counseling to be effective, the client must be truthful and candid. However, it is not uncommon for clients to provide false answers or remain silent during counseling sessions. Such passive behavior can diminish the quality of counseling. Therefore, this paper presents the design of a counseling support system that utilizes multimodal biometric signal measurement and analysis. The proposed system analyzes the client's EEG, GSR, and breathing patterns during counseling sessions, enabling counselors to accurately assess the emotional and physical state of the client and devise appropriate counseling strategies. This system enhances the efficiency of counseling, allows for rapid response to psychological changes, and incorporates technologies to enable personalized counseling and maximize the effectiveness of sessions. Future research will focus on expanding the system's application range and improving the user interface to develop a more effective and user-friendly tool.
Most researches about rumble strips have Presented only the before-and-after analysis of the accidents. So, Researchers have not dealt with the estimation of rumble strip's effectiveness on the driver's alertness. In this study. the effectiveness of the rumble strips on the driver's alertness was estimated by measuring the bio-signal transmitted from the driver. The bio-signal acquired for this experiments were theta wave in central lobe. The experimental results revealed that the theta waves as measured form the drivers's head while in the rumble strip section differed from those while in non-rumbled section; 74 percent decrease in theta wave value, respectively. This fact finding could mean that the driver's alertness increased from 74 percent while in the rumble strip section of the road. In all five trials of driving experiments on the rumble strip section, all the drivers showed the best alertness as measured by the theta waves in the first driving trial.
Journal of the Korea Society of Computer and Information
/
v.25
no.7
/
pp.113-123
/
2020
Obstructive sleep apnea (OSA) among sleep disorders is one of relatively common diseases. Patients can be checked for the disease through sleep polysomnography. However, as far as he diagnosis of OSA using polysomnography (PSG) is concerned, many practical problems such as an increasing number of patients, expensive testing cost, discomfort during examination, and the limited number of people for testing have been pointed out. Accordingly, for the purpose of substituting PSG researchers have been actively conducting studies on OSA diagnosis based on machine learning using bio signals. In this regard, we review a rich body of existing OSA diagnosis studies applying machine learning techniques based on bio-signal data. As a result, this paper presents a novel taxonomy of the reviewed studies and provides their comprehensive comparative analysis results. Also, we reveal various limitations of the studies using the bio signals and suggest several improvements about utilization of the used machine learning methods. Finally, this paper presents future research topics related to the application of machine learning techniques using bio signals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.