• 제목/요약/키워드: Biosafety level

검색결과 53건 처리시간 0.027초

미국 연구소 건축의 친환경 디자인 프로세스와 계획요소 - LABS21와 LEED 친환경 인증프로그램의 연구소 건축을 중심으로 - (Lessons from Green Strategies of the Laboratory Buildings in the U.S. - Focus on the Recent Green Development of LABS21 and LEED -)

  • 이중원;토스텐슛제
    • KIEAE Journal
    • /
    • 제12권5호
    • /
    • pp.43-52
    • /
    • 2012
  • This study aims to analyze the green strategies of laboratory buildings in the U.S. developed by LABS21 and LEED of USGBC. To achieve this goal, the paper analyzed the design process of green laboratories and the sustainable planning strategies. Laboratories, as a building type, have specific requirments stipulated by NIH. Chemical restive measures and biosafety level measures needed to be met in laboratory buildings prior to meeting green measures. Obama Admistration's Executive Order 13514 in mind, the paper has mainly focused on the five areas of green planning strategies in the laboratory buildings; site, energy, water, indoor environment, and materials. The study informed that the current green certification program needs to expand into the particular building types in order to; first, provide more realistic energy-saving benchmarking data, and second, provide building-type-specific green strategies.

Ginseng Total Saponin Attenuate Cardiac Hypertrophy Induced by Homocysteine in Rats

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제33권4호
    • /
    • pp.260-267
    • /
    • 2009
  • Recent studies have shown that Panax ginseng has a variety of beneficial effects on the cardiovascular system. Homocysteine (Hcy), which is derived from methionine, has been closely associated with the increased risk of cardiovascular diseases. In the present study, whether the in-vivo long-term co-administration of ginseng total saponins (GTS), active ingredients of Panax ginseng, with L-methionine (Met) inhibits methionine-induced hyperhomocysteine (HHcy) and H-Hcy-induced cardiovascular dysfunctions was investigated, and it was found that the plasma Hcy level, which was measured after 30 and 60 days, in the GTS+Met co-administration group was more significantly reduced than in the Metalone-treatment group. The left-ventricle (LV) wall thickness of the heart was likewise examined in each treatment group, and it was found that the co-administration of GTS with Met significantly reduced the Met-induced LV wall thickness. The results of the study indicate that the in-vivo long-term co-administration of GTS with Met not only inhibited H-Hcy induced by long-term Met-alone administration but also attenuated the H-Hcy-induced cardiovascular dysfunctions in rats.

생물안전 3등급시설의 공기환경 예측 및 공조부하 절감에 대한 해석 (An Analytical Study on the Prediction of Indoor Air Quality and the Reduction of Air Conditioning Load in Bio Safety Level 3 Laboratory)

  • 홍진관;박현진
    • 설비공학논문집
    • /
    • 제24권11호
    • /
    • pp.813-822
    • /
    • 2012
  • In this study, the multizone simulation for biosafety of BSL3 lab. and energy simulation are carried out simultaneously by using linked model of CONTAM and TRNSYS. In BSL3 lab., annual energy consumption is approximately five to ten times more than the magnitude of the office building. This is because required air change rate is extremely large and it is difficult to maintain room pressure difference efficiently. To maintain pressure difference between laboratory rooms through sealing condition of doors and proper airflow control is significant. In this study, to predict indoor environment of the BSL3 lab.(Influenza A research lab.), the multizone simulation for four kinds of biohazard scenario is also performed as part of risk assessment. Multizone and energy simulation results by using linked model show that these approaches are used as a tool for the energy efficient design and operation method for the safer BSL3 lab. facilities.

생물안전 3등급(BSL3)시설의 생물재해 시나리오에 따른 실내 공기환경예측에 관한 연구 (A Study on the Prediction of Indoor Environment in Bio Safety Level 3 Laboratory According to Biohazard Scenario)

  • 박현진;홍진관
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.745-750
    • /
    • 2010
  • Since the implementation of the LMO Law in Korea, the importance of the design qualification of BSL3 lab. is emphasizing. In this study, multizone simulation for three kind of biohazard scenarios using CONTAM is performed for design qualification of BSL3 lab. Also, in the case of unexpected spread of contaminants such as Influenza A virus(H1N1) in BL3 zone, the design qualification is carried out for diffusion and decontamination of contaminants according to differential pressure of BSL3 anteroom and door area of BSL3 lab. Also, in this study, appropriateness of laboratory room differential pressure and air flow rate to maintain pressure difference between laboratory rooms, and energy consumption due to air change rate variation according to door area in BL3 lab. Simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

Improvement of FK506 Production in the High-Yielding Strain Streptomyces sp. RM7011 by Engineering the Supply of Allylmalonyl-CoA Through a Combination of Genetic and Chemical Approach

  • Mo, SangJoon;Lee, Sung-Kwon;Jin, Ying-Yu;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.233-240
    • /
    • 2016
  • FK506, a widely used immunosuppressant, is a 23-membered polyketide macrolide that is produced by several Streptomyces species. FK506 high-yielding strain Streptomyces sp. RM7011 was developed from the discovered Streptomyces sp. KCCM 11116P by random mutagenesis in our previous study. The results of transcript expression analysis showed that the transcription levels of tcsA, B, C, and D were increased in Streptomyces sp. RM7011 by 2.1-, 3.1-, 3.3-, and 4.1-fold, respectively, compared with Streptomyces sp. KCCM 11116P. The overexpression of tcsABCD g enes in Streptomyces sp. RM7011 gave rise to approximately 2.5-fold (238.1 μg/ml) increase in the level of FK506 production compared with that of Streptomyces sp. RM7011. When vinyl pentanoate was added into the culture broth of Streptomyces sp. RM7011, the level of FK506 production was approximately 2.2-fold (207.7 μg/ml) higher than that of the unsupplemented fermentation. Furthermore, supplementing the culture broth of Streptomyces sp. RM7011 expressing tcsABCD genes with vinyl pentanoate resulted in an additional 1.7-fold improvement in the FK506 titer (498.1 μg/ml) compared with that observed under non-supplemented condition. Overall, the level of FK506 production was increased approximately 5.2-fold by engineering the supply of allylmalonyl-CoA in the high-yielding strain Streptomyces sp. RM7011, using a combination of overexpressing tcsABCD genes and adding vinyl pentanoate, as compared with Streptomyces sp. RM7011 (95.3 μg/ml). Moreover, among the three precursors analyzed, pentanoate was the most effective precursor, supporting the highest titer of FK506 in the FK506 high-yielding strain Streptomyces sp. RM7011.

금속가공유 취급 업종에서 우점하는 세균 및 진균의 정성평가 (Identification of Predominant Bacteria and Fungi in the Industry Treating Soluble Metal Working Fluids)

  • 박해동;박동진;박현희
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.416-424
    • /
    • 2014
  • Objectives: The objective of this study is to analyze the predominant microorganisms in the industry treating MWFs(Metal working fluids). Methods: The bacteria and fungi were collected by agar plate impaction and bulk MWFs in storage tank at 54 sites in 9 shops in South Korea. The dominant bacteria and fungi isolated from agar media were identified by fatty acid analysis and morphological analysis, respectively. Results: Totally 111 dominant bacteria were identified in the process, outdoor, and bulk MWFs. The predominant bacterial genus was Micrococcus and Bacillus in the process and outdoor, Pseudomonas in bulk MWF. Among the identified 119 strains of fungi, Cladosporium and Penicillium genus were dominated. The ratios of bacteria designated biosafety level 2 and 1 were 30% and 21%, respectively. Conclusions: This study has investigated the dominant microorganisms in soluble MWF using industry. And it was useful that the qualitative evaluation method along with quantitative analysis for better understanding of the biological factors in the work environment.

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho;Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.414-420
    • /
    • 2015
  • Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Growth Inhibitory Effects of Chlorine Dioxide on Bacteria

  • Song, Kyoung-Ju;Jung, Suk-Yul
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.270-274
    • /
    • 2018
  • Chlorine dioxide ($ClO_2$) gas is a neutral chlorine compound. $ClO_2$ gas was proven to effectively decontaminate different environments, such as hospital rooms, ambulances, biosafety level 3 laboratories, and cafeterias. In this study, to evaluate the effects of $ClO_2$ gas, bacteria of clinical importance were applied. Staphylococci, Streptococci and Bacillus strains were applied and Klebsiella, and others e.g., Escherichia coli, Shigella, Salmonella, Serratia were also done for the inhibitory analysis. Bacteria plates were applied with a hygiene stick, namely, "FarmeTok (Medistick/Puristic)" to produce $ClO_2$. $ClO_2$-releasing hygiene stick showed the very strong inhibition of bacterial growth but had different inhibitions to the bacteria above 96.7% except for MRSA of 90% inhibition. It is difficult to explain why the MRSA were not inhibited less than others at this point. It can be only suggested that more releasing $ClO_2$ should be essential to kill or inhibit the MRSA. B. subtilis, S. agalactiae, S. pyogenes, E. coli O157:H7, S. typhi (S. enterica serotype typhi) and S. marcesence were inhibited over 99%. This study will provide fundamental data to research growth inhibition by $ClO_2$ gas with bacteria of clinical importance value.