• Title/Summary/Keyword: Biopesticides

Search Result 44, Processing Time 0.024 seconds

Streptomyces Showing Antifungal Activities against Six Plant Pathogenic Fungi

  • KIM, BUM-JOON;MOONJAE CHO;JIN-CHEOL KIM;KWANG YUN CHO;GYUNG JA CHO;CHUL-HOON LEE;YOONGHO LIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1120-1123
    • /
    • 2001
  • Screening tests against six plant pathogenic fungi were performed in order to develop biopesticides. Actinomycetes were used to discriminate Bacillus thuringiensis for wide use as a microbial pesticide. From more than 100 actinomycetes tested, twelve strains showed potent antifungal activities. We report in vivo screening results from fermentation broths of these twelve strains and identification of the strain taxa.

  • PDF

Antifungal Activities Against Plasmodiophora brassicae Causing Club Root

  • Kim, Bum-Joon;Choi, Gyung-Ja;Cho, Kwang-Yun;Yang, Hee-Jung;Shin, Choon-Shik;Lee, Chul-Hoon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1022-1025
    • /
    • 2002
  • Club root is one of the major diseases that occur in crucifers. It is caused by Plasmodiophora brassicae. In order to discover microbial biopesticides against P. brassicae, forty-eight Streptomyces isolated from soil were screened. Among these, three strains showed excellent pesticidal activities. We report results on in vivo screening with fermentation broths of these strains and identification of the strain taxa.

Streptomyces with Antifungal Activity Against Rice Blast Causing Fungus, Magnaporthe grisea

  • Lee, Chul-Hoon;Kim, Bum-Joon;Choi, Gyung-Ja;Cho, Kwang-Yun;Yang, Hee-jung;Shin, Choon-Shik;Min, Shin-Young;Lim, Yoon-Gho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1026-1028
    • /
    • 2002
  • Screening tests against fungus causing rice blast, Magnaporthe grisea, were performed in order to develop biopesticides. More than 400 actinomycetes collected at several sites near Hanla Mountain on Jeju Island, Korea were tested, and strain BG2-53 showed potent antifungal activity. The in vivo screening was performed with fermentation broth, and the strain taxon was identified.

Recent Trends in Studies on Botanical Fungicides in Agriculture

  • Yoon, Mi-Young;Cha, Byeongjin;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites.

Characterization of Biopesticides (Bacillus thuringiensis) Produced in Korea (국내에서 생산된 Bacillus thuringiensis 살충제의 특성)

  • Kil, Mi-Ra;Kim, Da-A;Choi, Su-Yeon;Paek, Seung-Kyoung;Kim, Jin-Su;Jin, Da-Yong;Hwang, In-Chon;Yu, Yong-Man
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • Characteristics of the 5 biopesticides that included Bacillus thuringiensis and on the domestic markets were investigated. These products were contained different strains of B. thuringiensis, for examples; product A and E was B. thuringiensis subsp aizawai; product B was B. thuringiensis; product C was B. thuringiensis Berline var. kurstaki; product D was B. thuringiensis var. kurstaki. Number of active spores were counted because they could influence the bio-activity against target pests. Only product C are contained the fixed quantity as its label, however, product D and E were a tenth part, and product A and B were a hundredth part of their descriptions. The pHs of product A and B were measured 3.67 and 3.73, and C, D and E were 5, respectively. Typical bypyramidal crystals produced from B. thuringiensis was found in only product C under a phase contrast microscope. For the uniform formulation of products that conformed whether B. thuringiensis were equally spreaded on the crops, B. thuringiensis in the C, D and E were equally grown on the nutrient agar medium As a results, product A were more different from product C than any other products. When product A and C were bioassayed against different larval stages of diamondback moth, their mortalities with spraying application were showed 100% after 48 hours.

Thermal Stability of Representative Bioactive Compounds in Biopesticide Derived from Castor Oil or Wormseed Extract under Controlled Temperature (피마자유와 양명아주 추출물을 원료로 하는 유기농업자재 유효성분의 열 안정성 평가)

  • Choi, Geun-Hyoung;Jeong, Dong-Kyu;Jin, Cho-Long;Rho, Jin-Ho;Park, Byung-Jun;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • BACKGROUND: Castor oil and wormseed extract are important active ingredients for biopesticide, and ricinoleic acid in castor oil and three monoterpenes (ascaridole, carvacrol and p-cymene) in wormseed extract are known bioactive substances. However, their stabilities had not been studied, even though the stability was the core property for estimation of shelf-life of biopesticide. Aimed to investigate the thermal stabilities of the bioactive substances in castor oil and wormseed extracts. METHODS AND RESULTS: The contents of ricinoleic acid and three monoterpenes (ascaridole, carvacrol and p-cymene) were analyzed by gas chromatography (GC). The thermal stabilities of the bioactive substance were measured at $0^{\circ}C$, $23^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $45^{\circ}C$ and $54^{\circ}C$ for 84 d. The half-lives of ricinoleic acid in biopesticides was ranged from 28.9 d to 57.8 d at $30^{\circ}C$, and the stability of pure castor oil were located in the range ($t_{1/2}$=46.2d for Indian product and 27.7 d for Korean product) at the same temperature. The half-lives of the total monoterpenes in biopesticides were ranged from 3.9 d to 27.7 d at $30^{\circ}C$. Among the monoterpenes, the stability ascaridole and p-cymene were decreased in acidic condition. All the bioactive substances showed similar stability on the different thermal conditions. CONCLUSION:The half-lives of most bioactive substance from castor oil and wormseed extracts were less than 100 d. To increase the stability of bioactive substance in biopesticide, stabilizing additives like antioxidant and oxygen remover should be considered to extend of the shelf-life.

An Antifungal Property of Burkholderia ambifaria Against Phytopathogenic Fungi

  • Lee Chul-Hoon;Kim Min-Woo;Kim Hye-Sook;Ahn Joong-Hoon;Yi Yong-Sub;Kang Kyung-Rae;Yoon Young-Dae;Choi Gyung-Ja;Cho Kwang-Yun;Lim Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.465-468
    • /
    • 2006
  • Even though many pesticides are known for barley powdery mildew and wheat leaf rust, alternative controls are necessary, because of consumer rejection of chemical pesticides and the appearance of fungi resistant to fungicides. To discover biopesticides, many broths of microorganisms were screened. Of those, a culture broth of Burkholderia ambifaria showed an excellent antifungal activity against both Erysiphe graminis and Puccinia recondita, which cause barley powdery mildew and wheat leaf rust, respectively.

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan;Kim, In Seon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

Studies on the suppression of transmission of anthracnose with covering method and environment friendly agricultural materials (EFAM) in pepper field

  • Kang, B.R.;Ko, S.J.;Kim, D.I.;Choi, D.S.;Kim, J.D.;Choi, K.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.291-294
    • /
    • 2011
  • We studies a model for management of pepper anthracnose based covering method and spraying system in field. 1. Among 82 organic fungicides, 42 materials showed most effective inhibition against mycelia growth of the Colletotrichum acutatum in vitro. 23 formulated biocontrol agents were chosen to control the disease from 42 biocontrol agents in greenhouse. In the end, five kinds (2 plant extracts, 2 biopesiticides, 1 Bordeaux mixture) were selected from 23 materials in the field. 2. The mulching materials of bed covering in fruit season were thin non-woven fabric sheet and black plastic. The use of a fabric sheet was reduced the spread of anthracnose as compared to the plastic covering. 3. The application with the chosen materials was reduced 34% of anthracnose for 7 times sprays to planting 70 days as compared to the untreated control. In yield, nonwoven fabric sheet with formulated biopesticides was increased 17% than black plastic. 4. This result indicated that the developed biocontrol strategy could be an effective and economic crop protection system in organic pepper cultivation field.

Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens

  • Paguirigan, Jaycee A.;Liu, Rundong;Im, Seong Mi;Hur, Jae-Seoun;Kim, Wonyong
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Plant pathogens pose major threats on agriculture and horticulture, causing significant economic loss worldwide. Due to the continuous and excessive use of synthetic pesticides, emergence of pesticide resistant pathogens has become more frequent. Thus, there is a growing needs for environmentally-friendly and selective antimicrobial agents with a novel mode of action, which may be used in combination with conventional pesticides to delay development of pesticide resistance. In this study, we evaluated the potentials of lichen substances as novel biopesticides against eight bacterial and twelve fungal plant pathogens that have historically caused significant phytopathological problems in South Korea. Eight lichen substances of diverse chemical origins were extracted from axenic culture or dried specimen, and further purified for comparative analysis of their antimicrobial properties. Usnic acid and vulpinic acid exhibited strong antibacterial activities against Clavibacter michiganensis subsp. michiganensis. In addition, usnic acid and vulpinic acid were highly effective in the growth inhibition of fungal pathogens, such as Diaporthe eres, D. actinidiae, and Sclerotinia sclerotiorum. Intriguingly, the growth of Rhizoctonia solani was specifically inhibited by lecanoric acid, indicating that lichen substances exhibit some degrees of selectivity to plant pathogens. These results suggested that lichen substance can be used as a selective biopesticide for controlling plant disease of agricultural and horticultural significance, minimizing possible emergence of pesticide resistant pathogens in fields.