• Title/Summary/Keyword: Biometric Software

Search Result 81, Processing Time 0.024 seconds

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

Contactless Biometric Using Thumb Image (엄지손가락 영상을 이용한 비접촉식 바이오인식)

  • Lim, Naeun;Han, Jae Hyun;Lee, Eui Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.671-676
    • /
    • 2016
  • Recently, according to the limelight of Fintech, simple payment using biometric at smartphone is widely used. In this paper, we propose a new contactless biometric method using thumb image without additional sensors unlike previous biometrics such as fingerprint, iris, and vein recognition. In our method, length, width, and skin texture information are used as features. For that, illumination normalization, skin region segmentation, size normalization and alignment procedures are sequentially performed from the captured thumb image. Then, correlation coefficient is calculated for similarity measurement. To analyze recognition accuracy, genuine and imposter matchings are performed. At result, we confirmed the FAR of 1.68% at the FRR of 1.55%. In here, because the distribution of imposter matching is almost normal distribution, our method has the advantage of low FAR. That is, because 0% FAR can be achieved at the FRR of 15%, the proposed method is enough to 1:1 matching for payment verification.

The traffic performance evaluation between remote server and mobile for applying to encryption protocol in the Wellness environment (웰니스 환경에서 암호화 프로토콜 적용을 위한 모바일과 원격 서버간 트래픽 성능 평가)

  • Lee, Jae-Pil;Kim, Young-Hyuk;Lee, Jae-Kwang
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.415-420
    • /
    • 2013
  • U-WHS refers to a means of remote health monitoring service to combine fitness with wellbing. U-WHS is a system which can measure and manage biometric information of patients without any limitation on time and space. In this paper, we performed in order to look into the influence that the encryption module influences on the communication evaluation in the biometric information transmission gone to the smart mobile device and Hospital Information System.In the case of the U-WHS model, the client used the Objective-c programming language for software development of iOS Xcode environment and SEED and HIGHT encryption module was applied. In the case of HIS, the MySQL which is the Websocket API of the HTML5 and relational database management system for the client and inter-server communication was applied. Therefore, in WIFI communication environment, by using wireshark, data transfer rate of the biometric information, delay and loss rate was checked for the evaluation.

Development of Role-Playing Game (RPG) using biometric data (생체 데이터를 활용한 Role-Playing Game (RPG) 개발)

  • Sung-Wook Han ;Myung-Jin Go ;Beom-Jin Ham;Sung-Yong Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.965-966
    • /
    • 2023
  • 본 논문은 사용자의 생체 데이터를 기반으로 하는 Role-Playing Game(RPG)의 개발과정과 특징에 관하여 다룬다. 온라인 게임과 실제 생체데이터를 결합하여 게임 이용을 통한 건강 습관 촉진을 목표로 한다. 사용자의 생체 데이터는 게임 내 캐릭터의 능력치로 환산되며, 게임 플레이를 통해 건강한 생활습관과 운동 동기부여가 이루어진다. 교육과 의료 분야에서의 활용 가능성도 탐색되며, 미래 지향적인 게임의 새로운 방향성을 제시한다.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

Design of Service Delivery System for Stress Relief using Deep Learning Analysis Model (딥러닝 분석 모델 기반 스트레스 완화를 위한 서비스 제공 시스템 설계)

  • Kim, HyunJeong;Yoo, Seoyeon;Im, HyoGyeong;Kim, Kang-Gyoo;Yun, NaRi;Ha, Ok-Kyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.535-536
    • /
    • 2021
  • 현대의 스트레스 케어는 대부분 비디오 시청, 상담, 취미 활동 등을 통해 진행된다. 시각, 청각을 스트레스 케어에 활용한 사례는 이미 일상에서 쉽게 접할 수 있음으로 다른 새로운 감각을 요구하고 있다. 본 논문에서는 스트레스 케어를 목적으로, 생체정보를 대상으로 딥러닝 기술 기반의 '사용자 스트레스 및 효과적인 스트레스 해소 요소 판단 알고리즘 모델'을 사용하는 서비스 제공 시스템을 설계한다. 생체정보는 손목시계형 웨어러블을 통해 수집된 심박수, 혈압, 체온, 산소포화도, ECG 등 생체데이터를 사용한다. 제시하는 방법은 실시간으로 수집된 생체정보를 알고리즘, 모델을 통해 스트레스 수치를 예측하여 사용자에게 적절한 음악과 조명을 이용한 시청각적 요소와 아로마 요법을 이용한 후각적 요소를 제공한다.

  • PDF

Blockchain-Based Pet Trade Service DApp (블록체인 기반 반려견 거래 서비스 DApp)

  • Cha, Ju Min;Kim, Jeong Gyu;Kim, Yong Yook;Lim, Moo Hyun;Kim, Woosaeng
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.79-87
    • /
    • 2019
  • Blockchain is a distributed network in a decentralized P2P infrastructure. In this paper, we propose and implement a blockchain-based pet trade service DApp(Decentralized Application). In the existing trading services, there is no way to know the status of dogs in interpersonal transactions and an additional distribution cost has been incurred. As a solution to this problem, we introduce a blockchain technology for a pet trade service where users can check whether an individual pet is healthy or not by its registered biometric data in order to have an efficient and confident trade service. The registered users can purchase puppies or registering information for their dogs to sell through a pet trade service DApp. It is also possible to make a reliable trade by verifying whether the dog is actually the same one through an inscription information of a dog.

A Multiple Signature Authentication System Based on BioAPI for WWW (웹상의 BioAPI에 기반한 서명 다중 인증 시스템)

  • Yun Sung Keun;Kim Seong Hoon;Jun Byung Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1226-1232
    • /
    • 2004
  • Biometric authentication is rising technology for the security market of the next generation. But most of biometric systems are developed using only one of various biological features. Recently, there is a vigorous research for the standardization of various biometric systems. In this paper, we propose a web-based authentication system using three other verifiers based on functional, parametric, and structural approaches for one biometrics of handwritten signature, which is conformable to a specification of BioAPI introduced by BioAPI Consortium for a standardization of biometric technology. This system is developed with a client-server structure, and clients and servers consist of three layers according to the BioAPI structure. The proposed neb-based multiple authentication system of one biometrics can be used to highly increase confidence degree of authentication without additional several biological measurements, although rejection rate is a little increased. That is, the false accept rate(FAR) decreases on the scale of about 1:40,000, although false reject rate(FRR) increases about 2.7 times in the case of combining above three signature verifiers. So the proposed approach can be used as an effective identification method on the internet of an open network. Also, it can be easily extended to a security system using multimodal biometrics.

Biometric identification of Black Bengal goat: unique iris pattern matching system vs deep learning approach

  • Menalsh Laishram;Satyendra Nath Mandal;Avijit Haldar;Shubhajyoti Das;Santanu Bera;Rajarshi Samanta
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.980-989
    • /
    • 2023
  • Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.

HMM-Based Human Gait Recognition (HMM을 이용한 보행자 인식)

  • Sin Bong-Kee;Suk Heung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.499-507
    • /
    • 2006
  • Recently human gait has been considered as a useful biometric supporting high performance human identification systems. This paper proposes a view-based pedestrian identification method using the dynamic silhouettes of a human body modeled with the Hidden Markov Model(HMM). Two types of gait models have been developed both with an endless cycle architecture: one is a discrete HMM method using a self-organizing map-based VQ codebook and the other is a continuous HMM method using feature vectors transformed into a PCA space. Experimental results showed a consistent performance trend over a range of model parameters and the recognition rate up to 88.1%. Compared with other methods, the proposed models and techniques are believed to have a sufficient potential for a successful application to gait recognition.