• Title/Summary/Keyword: Biomedical materials

Search Result 1,143, Processing Time 0.028 seconds

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

Effect of 50 ㎛ class granules on the Injection Behavior of Brushite Bone Cement Prepared via Pre-dissolution Route

  • Mun, Da Hye;Lee, Sang Cheon;Oh, Kyung-Sik
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.468-476
    • /
    • 2020
  • The bone cement used for vertebroplasty must be sufficiently injectable. The introduction of granules reduces the amount of liquid required for liquefaction, implying that higher fluidity is achieved with the same amount of liquid. By employing β-tricalcium phosphate granules with an average diameter of 50 ㎛, changes in injectability are observed based on the paste preparation route and granular fraction. To obtain acceptable injectability, phase separation must be suppressed during injection, and sufficient capillary pressure to combine powder and liquid must work evenly throughout the paste. To achieve this, the granules should be evenly distributed. Reduced injection rates are observed for dry mixing and excessive granular content, owing to phase separation. All these correspond to conditions under which the clustered granules weakened the capillary pressure. The injected ratio of the paste formed by wet mixing displayed an inverted U-type shift with the granular fraction. The mixture of granules and powder resulted in an increase in the solid volume fraction, and a decrease in the liquid limit. This resulted in the enhancement of the liquidity, owing to the added liquid. It is inferred that the addition of granules improves the injectability, provided that the capillary pressure in the paste is maintained.

Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications (생체용 Ti-Zr-Pd계 합금의 양극분극특성)

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF

Preparation and characterization of zirconium nitride and hydroxyapatite layered coatings for biomedical applications

  • Nathanael, A. Joseph;Lee, Jun-Hui;Hong, Sun-Ik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.102.2-102.2
    • /
    • 2012
  • Different layers of zirconium nitride (ZrN) and hydroxyapatite (HA) coatings were prepared on cp Ti substrate for biomedical applications. The main idea is to improve the mechanical strength as well as the biocompatibility of the coating. ZrN is known for its high mechanical strength, corrosion resistance. HA is well known for its biocompatibility properties. Hence, in this study, both materials were coated on a cp Ti substrate with bottom layer with ZrN for good bonding with substrate and the top layer with HA for induce bioactivity. Middle layer was formed by a composite of HA and ZrN. Detail analyses of the layered coatings for its structural, morphological, topographical properties were carried out. Then the mechanical property of the layered coatings was analyzed by nanoindentation. Biomimetic growths of apatite on the functionally graded coatings were determined by simulated body fluid method. This study provides promising results to use this kind of coatings in biomedical field.

  • PDF

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Fabrication and characterization of aligned crossply PHBV fibrous mat

  • Kim, Yang-Hee;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.44.1-44.1
    • /
    • 2010
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a bacterially derived copolymer produced by fermentation. PHBV has been attractive because of its potential environmental, pharmaceutical and biomedical applications. Recently, the electrospinning technique has been used to fabricate fibrous mat for biomedical applications such as artificial blood vessel, drug release and scaffolds, because this method is simple and easy to get ultrafine polymer fibers. Depending on speed of rotation drum collector, fiber structure was different. In this work, PHBV fiber was aligned by electrospinnning machine. Furthermore, alignment of PHBV fiber mats was given angle such as $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The morphology of each aligned PHBV fiber mat was observed by SEM technique. The mechanical property was evaluated depending on alignment angle. Especially, cell attachment ability depending on alignment of PHBV fiber mats was carried out using MG- 63 osteoblast like cells.

  • PDF

Simvastatin loaded porous poly(lactide-co-glycolide)(PLGA) microspheres as delivery systems strategies for injuring tissue and invitro study

  • Bao, Trinh-Quang;Kim, Yang-Hee;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • Regeration of natural tissuesor to create biological substitutes for defective or lost tissues and organs through the use of cells. In addition to cells and their porous, drugs are required to promote tissue regeneration. Therefore, the present studies were prepared using simvastatim loaded porous poly(lactide-co-glycolide) (PLGA) by double emulsion solvent evaporation water-in-oil-in-water technique (W/O/W) as drug delivery system strategies for injuring tissue. The resulting microspheres were evaluated for morphology, particle size, encapsulation efficiency, degradation of PLGA microspheres in vitro drug release and in vitro cell viability. Scanning electronic microscopic (SEM) showed that the porosities of the particles was changed by experimental conditions and cultured cells were attached well on porous microspheres surface. The X-ray diffraction (XRD) and differential scanning calometry (DSC) analysis indicate thatsimvastatim was highly dipersed in the microsphere at amorphousstate.

  • PDF

Cell Growing Behavior on the Electrospun PVA/GE nanofibermats.

  • Linh, Nguyen Thuy Ba;Nguyen, Thi-Hiep;Song, Ho-Yeon;Yang, Hun-Mo;Min, Young-Ki;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.41.2-41.2
    • /
    • 2009
  • Electrospinning of Polyvinylalcohol (PVA), Gelatin (GE), and PVA/GE blend solutions in acetic acid were investigated to fabricate biodegradable for tissue engineering. The morphology of the electrospun nanofibers was investigated with a field emission scanning electron microscope. The fibers have average diameters in the range 50-150 nm. The miscibility of PVA/GE blend fibers was examined by differential scanning calorimetry.The PVA and GE were immiscible in the as-spun nanofibrous structure. X-ray diffraction (XRD) determined the crystallinity of the membrane and tensile strength for evaluation physical properties. An in vitro study of PVA/GE blend nanofibers was conducted. To assay the cytocompatibility and cell behavior on the PVA/GE blend nanofibrous scaffolds, cell attachment and spreading of fibroblasts seeded on the scaffolds were studied. Our results indicate that thePVA/GE blend nanofibrous matrix, particularly the one that contained 20% PVA and 80% GE could be a good candidate for tissue engineering scaffolds, because it has an excellent cell attachment and spreading for fibroblast cell.

  • PDF

Fabrication and Characterization of Novel Electrospun PVPA/PVA Nanofiber Matrix for Bone Tissue Engineering

  • Franco, Rose-Ann;Nguyen, Thi Hiep;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.51.2-51.2
    • /
    • 2011
  • A novel electrospun nanofiber membrane was fabricated using combined poly (vinylphosphonic acid) (PVPA) and polyvinyl alcohol (PVA) intended for bone tissue engineering applications. PVPA is a proton-conducting polymer used as primer for bone implants and dental cements to prevent corrosion and brush abrasion. The phosphonate groups of PVPA have the ability to crosslink and attach itself to the hydroxyapatite surface facilitating faster integration of the biomaterial to the bone matrix. PVA was combined with PVPA to provide hydrophilicity, biocompatibility and improve its spinnability. To improve its mechanical strength, PVPA/PVA and neat PVA mixtures were combined to produce a multilayer scaffold. The physical and chemical properties of the of the fabricated matrix was investigated by SEM and TEM morphological analyses, tensile strength test, XRD, FT-IR spectra, swelling behavior and biodegradation rates, porosity and contact angle measurements. Biocompatibility was also examined in vitro by cytotoxicity and cell proliferation studies with MTT assay and cell adhesion behavior by SEM and confocal microscopy.

  • PDF