• Title/Summary/Keyword: Biomedical devices

Search Result 425, Processing Time 0.025 seconds

A Simulator for the Validation of Non-invasive Blood Pressure (NIBP) Monitoring Devices (자동혈압계 성능평가를 위한 인체혈압 시뮬레이터 개발)

  • Doh, Il;Lim, Hyun Kyoon;Ahn, Bongyoung;Chee, Youngjoon;Lee, Jongshill;OH, Jae Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.111-115
    • /
    • 2017
  • Blood pressure is one of the important vital signs for monitoring the medical condition of a patient. Automated NIBP(non-invasive blood pressure) monitoring devices calculate systolic and diastolic blood pressures from the oscillation in cuff pressure caused by a pulsation of an artery. To validate the NIBP devices, we developed a simulator to supply the oscillometric waveforms obtained from human subjects. The simulator provided pressure pulses to device-under-test and device readings were compared to the auscultatory references. Fully automated simulation system including OCR(optical character recognition) were developed and used for NIBP monitoring devices. The validation results using the simulator agreed well with previous clinical validation. More validation studies using the standardized oscillometric waveforms would be required for the replacement of clinical trials to validate a new automated NIBP monitoring device.

A Comparative Study on Innovative Medical Device Management Systems in Major Countries (주요국의 혁신적 의료기기 관리제도에 대한 비교 연구)

  • Lee, Jin Su;Kim, Sukyeong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • As new types of medical devices are emerging through convergence with advanced technology, innovative technologies are becoming hot issues in health policy because of their disruptiveness. This study analyzed the innovative medical device management systems in the US, China and Korea. Innovative medical devices have been defined differently depending on the country's management system, but in common, they are defined as products that do not exist or have dramatically improved performance compare to existing products by applying innovative technologies. Innovative medical devices have been supported by regulatory authorities during product development and approval processes. While the US and China have more than 300 products designated as innovative medical devices with diverse functions, application fields, and manufacturing countries considering the initial situation of the implementation for the system, Korea has only 16 products, mainly radiology and diagnostic devices and made in Korea only as innovative medical device. In addition, Korea shows the highest market approval rate of innovative medical devices compare to the US and China, and it is necessary to prepare the approval process in consideration of product diversity.

DB set-up of the Year 2000 date problem for medical device (의료기기 Year2000 문제해결을 위한 데이터베이스 구축방안)

  • Kim, S.H.;Juh, R.H.;Lee, S.D.;Shin, T.S.;Kim, J.S.;Kim, S.H.;Huh, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.104-105
    • /
    • 1998
  • To minimize the Y2K (year 2000) date aware problem of medical devices, we are developing a database that keeps the data such as equipment type, specification, serial number, model number, acquisition date, vendor, manufacturer of the device as well as the names of departments that installed and that is currently responsible for the management of the medical device. The database also keeps the information as to whether the device awares the date, whether it is affected by the Y2K problem or not, how to solve the problem, reference home page address, and so on. The data was collected via internet search of the FDA web site and related of manufacturers homepages. To manage the Y2K problem effectively, the database should be updated regularly to include recent information.

  • PDF

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Effects of Cell-Cell Contact on Vibration Loading-induced Browning of 3T3-L1 Preadipocytes (진동 자극을 통한 3T3-L1 지방전구세포의 갈변화에서 세포 간 접촉의 영향)

  • Heejin Noh;Yong Chan Jung;Gayoung Kim;Eunyeong Moon;Eun Mi Lee;Chi Hyun Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.43-48
    • /
    • 2024
  • The prevalence of obesity and its complications is steadily increasing worldwide. It is essential to understand cellular level metabolism and microenvironment to treat diseases related to lipid metabolism. Mechanical loading can activate signaling pathway by stimulating cells, especially vibration loading known to inhibit adipogenesis, so it has been studied as a treatment for obesity. Also, vibration loading can affect the inside of the human body non-invasively. Another clue to reducing adipose tissue is browning, which means that white adipocytes changes to brown adipocyte. In this study, we design and developed a device that that can control cell-cell contact, and vibration simulation device. Using these two devices, we investigated responses of cells to vibration loading. Protein expression associated with browning and adipogenesis were analyzed. In conclusion, vibration loading can be transmitted through cell contact and loading applied to the cells can induce browning and inhibit adipogenesis of preadipocytes. These results suggest the possibility that vibrations could be a treatment for obesity.

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Regulation Issues in Korea and Technical Feasibility Evaluation of 3D Printing-Based Medical Device Repair (3D 프린팅 기술의 의료기기 수리 적용에 대한 국내 규제 이슈 및 기술적 적합성 평가)

  • Yun, Sung Uk;Nam, Kyoung Won
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.75-83
    • /
    • 2020
  • In large-scale hospitals, the department of biomedical engineering should always provide quick repair service for damaged medical devices to guarantee continuous patient treatment. However, in actual circumstances, there are so many time-consuming issues that delays device repair for weeks or even months; therefore, it is required to prepare alternative ways for quick repair service. In this study, we first mentioned about the regulation issues in Korea about the 3D printing-based medical device repair, and then introduced the results of our preliminary study that evaluated the feasibility of 3D printing-based medical device repair before real-field application. Results of the study demonstrated that, in all of the 23 cases, parts for repair that were manufactured by 3D-printing were successfully fixed and connected to the main body of the original device, and showed sufficient rigidity for protecting internal parts of the device. Considering the experimental results, medical device repair by applying 3D printing technology can be a promising alternative in cases when regular repair process is not available or takes too much time.

A Study on the Interoperability between the HL7 and the IEEE 1451 based Sensor Network (HL7과 IEEE 1451 기반 센서 네트워크와의 연동에 관한 연구)

  • Kim, Woo-Shik;Lim, Su-Young;Ahn, Jin-Soo;Nah, Ji-Young;Kim, Nam-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.457-465
    • /
    • 2008
  • HL7(Health Level 7) is a standard for exchanging medical and healthcare data among different medical information systems. As the ubiquitous era is coming, in addition to text and imaging information, a new type of data, i.e., streaming sensor data appear. Since the HL7 is not covering the interfaces among the devices that produces sensor data, it is expected that sooner or later the HL7 needs to include the biomedical sensors and sensor networks. The IEEE 1451 is a family of standards that deals with the sensors, transducers including sensors and actuators, and various wired or wireless sensor networks. In this paper, we consider the possibility of interoperability between the IEEE 1451 and HL7. After we propose a format of messages in HL7 to include the IEEE 1451 TEDS, we present some preliminary results that show the possibility of integrating the two standards.

Ear Canal Insertable Size Wireless Transceiver for Hearing Aid

  • Woo, Sang-Hyo;Mohy-Ud-Din, Zia;Yoon, Young-Ho;Kim, Min-Kyu;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • The aim of this study was to test the feasibility of a wireless transceiver that can be inserted into the ear canal. The wireless technology could minimize the cosmetic problems of patients, and it can be applied to binaural hearing aids for improving speech perception. In order to implement the ear canal insertable transceiver, simple finite-difference time-domain (FDTD) simulations were carried out to determine the feasibility, and the hardware of the transceiver was implemented within the ear shell. The size of the implemented transceiver was only $7{\times}7mm$, and it could successfully transmit signals to external devices. In order to measure the radiation pattern, a simple RF phantom was used, and the maximum attenuation from the phantom was observed to be 23 dB when the reference antenna was placed at a distance of 2 m from the transmitter.

Design Criteria to Miniaturize the Single Use Functional Respiratory Air Flow Tube

  • Kim Kyung Ah;Lee Tae Soo;Cha Eun Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.163-169
    • /
    • 2005
  • Respiratory tubes with a length of 35mm and diameters of 10, 15, and 20mm were made for experimental purpose, and both the static$(P_s)\;and\;dynamic(P_D)$ pressures were simultaneously measured for steady flow rates ranging 1-12//sec. Least squares analysis resulted successful fitting of $P_s\;and\;P_D$ data with quadratic equations with correlation coefficients higher than 0.99(P<0.0001). The spirometric measurement standards of the American Thoracic Society(ATS) were applied to $P_s$ data, which demonstrated the smallest tube diameter of 15mm to satisfy the ATS standards. The maximum $P_D$ value of the velocity type transducer(the functional single use respiratory air flow tube) with the diameter of 15mm was estimated to be approximately $75cmH_2O$, implying more than 7 times larger sensitivity than the widely used pneumotachometers. These results showed that the velocity type respiratory air flow transducer is a unique device accomplishing miniaturization with the sensitivity increased, thus would be of great advantage to develop portable medical devices.