• Title/Summary/Keyword: Biomedical applications

Search Result 752, Processing Time 0.027 seconds

Classifying Biomedical Literature Providing Protein Function Evidence

  • Lim, Joon-Ho;Lee, Kyu-Chul
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.813-823
    • /
    • 2015
  • Because protein is a primary element responsible for biological or biochemical roles in living bodies, protein function is the core and basis information for biomedical studies. However, recent advances in bio technologies have created an explosive increase in the amount of published literature; therefore, biomedical researchers have a hard time finding needed protein function information. In this paper, a classification system for biomedical literature providing protein function evidence is proposed. Note that, despite our best efforts, we have been unable to find previous studies on the proposed issue. To classify papers based on protein function evidence, we should consider whether the main claim of a paper is to assert a protein function. We, therefore, propose two novel features - protein and assertion. Our experimental results show a classification performance with 71.89% precision, 90.0% recall, and a 79.94% F-measure. In addition, to verify the usefulness of the proposed classification system, two case study applications are investigated - information retrieval for protein function and automatic summarization for protein function text. It is shown that the proposed classification system can be successfully applied to these applications.

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • Kim, Moon-Soo;Kini, Anu Ganesh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.533-541
    • /
    • 2017
  • Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

Direct Metal Laser Sintering-New Possibilities in Biomedical Part Manufacturing

  • Kotila, Juha;Syvanen, Tatu;Hanninen, Jouni;Latikka, Maria;Nyrhila, Olli
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.248-249
    • /
    • 2006
  • Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.

  • PDF

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF

Current Status of Biomedical Applications using 3D Printing Technology (3D프린팅 활용 생체의료분야 기술동향)

  • Park, Suk-Hee;Park, Jean Ho;Lee, Hye Jin;Lee, Nak Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1067-1076
    • /
    • 2014
  • To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we provide a brief overview of the biomedical applications using 3D printing techniques, such as surgical tool, medical device, prosthesis, and tissue engineering scaffold. Compared to the other applications of 3D printed products, the scaffold fabrication should be performed with careful selection of bio-functional materials. In particular, we describe how the biomaterials can be processed into 3D printed scaffold and applied to tissue engineering area.

Fabrication of Porous Ceramic Materials for Biomedical and Environmental Applications

  • Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.18.2-18.2
    • /
    • 2009
  • Ceramics have some properties that are unmatched by other kind of materials like metals or polymers. The ability of high thermal and chemical resistance and in case of being superior in specific mechanical properties makes the ceramic materials suitable for arange of applications. The microstructure and morphology of a material arguably permit the use of many advanced application otherwise difficult to achieve.Porous structures have some important applications in biomedical and environmental field. For human hard tissue reconstruction and augmentation procedure suitable biomaterials are used with a desirable porosity. A range of porous bioceramics were fabricated with tailored design to meet the demand of specific applications. Channeled and interconnected porosity was introduced in alumina, zirconia, and hydroxyapatite or tri calcium phosphate ceramics by different methods like multi-pass extrusion process, bubble formation in viscous slurry,slurry dripping in immiscible liquid, sponge replica method etc. The detailed microstructural and morphological investigations were carried out to establish the unique features of each method and the developed systems. For environmental filters the porous structures were also very important. We investigated a range of channeled and randomly porous silicon based ceramic composites to enhance the material stability and filtration efficiency by taking advantage of the material chemistry of the element. Detailed microstructural and mechanical characterizations were carried out for the fabricated porous filtration systems.

  • PDF

Bombyx mori Silk Fibroin Films: Preparation, Characterization of Physical and Chemical Properties, Use as Biomaterial

  • Freddi, Giuliano
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.34-38
    • /
    • 2003
  • The silk fibre Produced by the larvae of the lepidopter of the Bombyx mori species is no doubt one of the most precious raw materials employed in manufacturing textile products. The present report, however, deals with silk not as a traditional textile fibre, but as a starting material fer biomedical applications. In recent years, the unique chemical and mechanical properties of silk have made this protein polymer highly attractive for innovative applications, which mainly focus on the development of devices for biomedical uses. (omitted)

  • PDF

Biomedical Applications of Magnetic Nanoparticles (자성 나노입자의 생의학적 응용)

  • 정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.141-147
    • /
    • 2002
  • 21세기를 선도할 기술로 전 세계적으로 각광을 받고 연구가 활발히 진행되고 있는 분야는 나노기술(W), 생명공학기술(BT), 정보통신기술(IT)이라고 할수 있다. 우리나라에서도 최근 이에 대한 연구 및 교육 지원 프로그램을 세워 법정부적으로 지원을 하고 있다. 특히 나노기술은 다른 분야와의 기술융합이 가장 활발하게 진행되고 있다. 이러한 분야들은 우리나라와 같이 부존자원이 매우 적은 나라로써는 세계열강과 경쟁하기 위한 새로운 돌파구로 활용될 수 있을 것으로 판단된다. 본 고에서는 신기술 분야 중에서 나노기술과 생명공학기술의 접목분야로써 자성 나노입자의 생의학적 응용(biomedical applications)에 대하여 알아보고자 한다.

Biotechnology and Biomedicine - a Case Study with Recombinant Limulus Factor C

  • Ling, Ding-Jeak;Ho-Bow
    • Biomedical Science Letters
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • Biotechnology "embraces everything from the production of recombinant proteins to the use of biological molecules as components of nanotechnology". Strategic-basic research in biotechnology is crucial to boosting world economy and creating jobs in the Life Sciences. Biotechnology will be the benefit to be drawn from biomedical life science research, which promises to be the new pillar of economy. Although the turnaround time for life science research products is painstakingly slow, the fruits of one such labour (Fig. 1), is being reaped fur worldwide biomedical applications.

  • PDF