References
- Ahn, D. G. and Yang, D. Y., "Principle of Rapid Prototyping and its Trends," J. Korean Soc. Precis. Eng., Vol. 22, No. 10, pp. 7-16, 2005.
- Wohler, T., "Wohlers Report 2013," Wohler's Associates Inc., pp. 23-52, 2013.
- Zein, I., Hutmacher, D. W., Tan, K. C., and Teoh, S. H., "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, No. 4, pp. 1169-1185, 2002. https://doi.org/10.1016/S0142-9612(01)00232-0
- EOS, "Medical Devices," http://www.eos.info/industries_markets/medical/medical_devices (Accessed 12 NOV. 2014)
- 3ders, "Ivan Owen: Life Enhancing 3D printed Prosthetics," http://www.3ders.org/articles/20140125- ivan-owen-life-enhancing-prosthetics-3d-printed-andopen-sourced.html (Accessed 12 NOV. 2014)
- Lee, J. Y., Choi, B., Wu, B., and Lee, M., "Customized Biomimetic Scaffolds Created by Indirect Three-dimensional Printing for Tissue Engineering," Biofabrication, Vol. 5, No. 4, Paper No. 045003, 2013.
- Stratasys, "Medical Case Studies," http://www.stratasys.co.kr/resources/case-studies/medical (Accessed 12 NOV. 2014)
- Turkcadcam, "Rapid Prototyping Helps Separate Conjoined Twins," http://www.turkcadcam.net/rapor/ otoinsa/uyg-medikal-conjoined-twins.html (Accessed 12 NOV. 2014)
- Cnet, "3D-printed 'Magic Arms' Give Little Girl New Reach," http://www.cnet.com/news/3d-printed-magicarms-give-little-girl-new-reach/ (Accessed 12 NOV. 2014)
- Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V., and Cronin, L., "Configurable 3D-Printed Millifluidic and Microfluidic 'Lab on a Chip' Reactionware Devices," Lab on a Chip, Vol. 12, No. 18, pp. 3199- 3522, 2012. https://doi.org/10.1039/c2lc90088b
- Huang, M. C., Ye, H., Kuan, Y. K., Li, M. H., and Ying, J. Y., "Integrated Two-step Gene Synthesis in a Microfluidic Device," Lab on a Chip, Vol. 9, No. 2, pp. 276-285, 2009. https://doi.org/10.1039/b807688j
- Yoo, J. J. and Lee, I. W, "Regenerative Medicine," Koonja Publishing Inc., pp. 293-508, 2010.
- EOS, "Orthopaedic Technology," http://www.eos.info/industries_markets/medical/orthopaedic_technology (Accessed 12 NOV. 2014)
- Realizer, "SLM in Action," http://www.goldenprogress.com/milling/realizer-slm-in-action.shtml (Accessed 12 NOV. 2014)
- Conept Laser, "Implants and Medical Instruments with LaserCUSING," http://www.concept-laser.de/ en/industry/medical.html (Accessed 12 NOV. 2014)
- Griffith, L. G. and Naughton, G., "Tissue Engineering: Current Challenges and Expanding Opportunities," Science, Vol. 295, No. 8, pp. 1009-1016, 2002. https://doi.org/10.1126/science.1069210
- Mikos, A. G. and Temenoff, J. S., "Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering," Electron. J. Biotechnol., Vol. 3, No. 2, pp. 114-119, 2000.
- Hollister S. J., "Porous Scaffold Design for Tissue Engineering," Nat. Mater., Vol. 4, No. 7, pp. 518-524, 2005. https://doi.org/10.1038/nmat1421
- 3D Biotek, "3D Insert : Proven & Superior 3D Architecture for in vivo-like 3D Culture," http://www.3dbiotek.com/newsletters/2012/Newsletter201212_2_Web.html (Accessed 12 NOV. 2014)
- Lee, S. J. and Cho, D. W., "Solid Freeform Fabrication Technique in Tissue Engineering," J. Korean Soc. Precis. Eng., Vol. 23, No. 12, pp. 7-15, 2006.
- Park, S. H., Kim, T. G., Kim, H. C., Yang, D. Y., and Park, T. G., "Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration," Acta Biomater., Vol. 4, No. 5, pp. 1198-1207, 2008. https://doi.org/10.1016/j.actbio.2008.03.019
-
Kwon, I. K. and Matsuda, T., "Photo-polymerized Microarchitectural Constructs Prepared by Microstereolithography (
$\mu$ SL) using Liquid Acrylateend-capped Trimethylene Carbonate-based Prepolymers," Biomaterials, Vol. 26, No. 14, pp. 1675-1684, 2005. https://doi.org/10.1016/j.biomaterials.2004.06.041 - Lee, J. W., Ahn, G. S., Kim, D. S., and Cho, D. W., "Development of Nano- and Microscale Composite 3D Scaffolds using PPF/DEF-HA and Microstereolithography," Microelectron. Eng., Vol. 86, No. No. 4, pp. 1465-1467, 2009. https://doi.org/10.1016/j.mee.2008.12.038
- Kim, T. G., Park, S. H., Chung, H. J., Yang, D. Y., and Park, T. G., "Microstructured Scaffold Coated with Hydroxyapatite/Collagen Nanocomposite Multilayer for Enhanced Osteogenic Induction of Human Mesenchymal Stem Cells," J. Mater. Chem., Vol. 20, No. 40, pp. 8927-8933, 2010. https://doi.org/10.1039/c0jm01062f
-
Seyednejad, H., Gawlitta, D., Kuiper, R. V., de Bruin, A., van Nostrum, C. F., et al., "In vivo Biocompatibility and Biodegradation of 3D-Printed Porous Scaffolds Based on a Hydroxyl-functionalized Poly(
$\varepsilon$ -caprolactone)," Biomaterials, Vol. 33, No. 17, pp. 4309-4318, 2012. https://doi.org/10.1016/j.biomaterials.2012.03.002 - Ding, C., Qiao, Z., Jiang, W., Li, H., Wei, J., et al., "Regeneration of a Goat Femoral Head Using a Tissue-specific, Biphasic Scaffold Fabricated with CAD/CAM Technology," Biomaterials, Vol. 34, No. 28, pp. 6706-6716, 2013. https://doi.org/10.1016/j.biomaterials.2013.05.038
- Kim, H. N., Kang, D. H., Kim, M. S., Jiao, A., Kim, D. H., and Suh, K. Y., "Patterning Methods for Polymers in Cell and Tissue Engineering," Ann. Biomed. Eng., Vol. 40, No. 6, pp. 1339-1355, 2012. https://doi.org/10.1007/s10439-012-0510-y
- Hockaday, L. A., Kang, K. H., Colangelo, N. W., Cheung, P. Y., Duan, B., et al., "Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds," Biofabrication, Vol. 4, No. 3, Paper No. 035005, 2012.
- Pataky, K., Braschler, T., Negro, A., Renaud, P., Lutolf, M. P., and Brugger, J., "Microdrop Printing of Hydrogel Bioinks into 3D Tissue-Like Geometries," Adv. Mater., Vol. 24, No. 3, pp. 391-396, 2012. https://doi.org/10.1002/adma.201102800
- Yan, J., Huang, Y., and Chrisey, D. B., "Laser-assisted Printing of Alginate Long Tubes and Annular Constructs," Biofabrication, Vol. 5, No. 1, Paper No. 015002, 2013.
- Park, S. H., Koh, U. H., Kim, M., Yang, D. Y., Suh, K. Y., and Shin, J. H., "Hierarchical Multilayer Assembly of an Ordered Nanofibrous Scaffold via Theramal Fusion Bonding," Biofabrication, Vol. 6, No. 2, Paper No. 024107, 2014.
- Ahn, S., Lee, H., Bonassar, L. J., and Kim, G., "Cells (MC3T3-E1)-laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying," Biomacromolecules, Vol. 13, No. 9, pp. 2997-3003, 2012. https://doi.org/10.1021/bm3011352
- Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H., et al., "Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-dimensional Tissues," Nat. Mater., Vol. 11, No. 9, pp. 768-774, 2012. https://doi.org/10.1038/nmat3357
- Norotte, C., Marga, F. S., Niklason, L. E., and Forgacs, G., "Scaffold-free Vascular Tissue Engineering using Bioprinting," Biomaterials, Vol. 30, No. 30, pp. 5910-5917, 2009. https://doi.org/10.1016/j.biomaterials.2009.06.034
- Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., et al., "3D Printed Bionic Ears," Nano Lett., Vol. 13, No. 6, pp. 2634-2639, 2013. https://doi.org/10.1021/nl4007744
Cited by
- Combinatorial Physical Stimulation and Synergistically-Enhanced Fibroblast Differentiation for Skin Regeneration vol.32, pp.8, 2015, https://doi.org/10.7736/KSPE.2015.32.8.755
- Prospect for 3D Printing Technology in Medical, Dental, and Pediatric Dental Field vol.43, pp.1, 2016, https://doi.org/10.5933/JKAPD.2016.43.1.93
- A Systematic Review of Manufacturing Method for Splint Using 3D Printing Technology vol.26, pp.2, 2018, https://doi.org/10.14519/jksot.2018.26.2.01
- Addressing Unmet Clinical Needs with 3D Printing Technologies vol.7, pp.17, 2018, https://doi.org/10.1002/adhm.201800417
- Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer vol.17, pp.2, 2018, https://doi.org/10.14775/ksmpe.2018.17.2.047