• 제목/요약/키워드: Biomedical Monitoring

검색결과 455건 처리시간 0.021초

등온증폭법을 이용한 고감도 JC polyomaviruses 진단법 개발 (Diagnostic Method for the Detection of JC Polyomavirus Using Loop-mediated Isothermal Amplification)

  • 조규봉
    • 대한임상검사과학회지
    • /
    • 제51권4호
    • /
    • pp.414-419
    • /
    • 2019
  • JC polyomavirus (JCPyV)는 viral group I, Polyomaviridae로 분류되는 사람 병원성 바이러스 이다. JCPyV는 최근 하수 등 수질오염 지표로 제안됨에 따라 수질환경에서 모니터링 필요성이 제기되고 있다. 임상 및 환경 시료 중 JCPyV 검출을 위해서 PCR 시스템이 사용되어 왔다. 그러나 신속하고 높은 검출 민감도를 가진 방법의 필요성에 따라 이번 연구에서는 등온증폭 프라이머 조합을 개발하였다. 이번에 개발한 방법은 기존 PCR 시스템에 비해 더욱 신속 및 약 10배 더 높은 검출 민감도를 보여주었다. 또한 본 연구에서 개발한 검출 방법의 재 검정을 위해서 HaeIII 제한효소를 이용한 방법을 함께 고안하였다. 따라서 이번 연구는 임상, 환경 등의 시료에서 JCPyV를 모니터링 하기 위한 방법으로 활용이 기대된다.

Predicting lipoabdominoplasty complications with infrared thermography: a delta-R analysis

  • Resende, Patricia Rodrigues;Brioschi, Marcos Leal;Meneck, Franciele De;Neves, Eduardo Borba;Teixeira, Manoel Jacobsen
    • Archives of Plastic Surgery
    • /
    • 제48권5호
    • /
    • pp.553-558
    • /
    • 2021
  • The diagnosis of the main complications resulting from lipoabdominoplasty has not yet been standardized. Infrared thermal imaging has been used to assess possible complications, such as necrosis and changes in micro- and macro-circulation, based on perforator mapping techniques, among others. The objective of this study was to present two clinical cases involving thermal imaging monitoring of the healing process of lipoabdominoplasty in the immediate postoperative evaluation and its preliminary results. Infrared thermography was performed 24 hours after the operation and on postoperative days 5, 25, and 27. In clinical case 1, it was found that the delta-R (∆TR)-defined as the difference in minimum temperature between the highest and lowest points in the SA3 region (caution suction area) following the classification established by Matarasso-was 0.4℃ at 24 hours after surgery and decreased to 0.1℃ on a postoperative day 5. There were no complications in this case. In contrast, in clinical case 2, the ∆TR was 1.7℃ at 24 hours after surgery (upon hospital discharge) and remained high, at 2.2℃, on postoperative day 5. A higher ∆TR was found in the second patient, who developed necrosis of the surgical wound. The ∆TR thermal index may be a new tool for predicting possible complications, complementing the clinical evaluation and therapeutic decision-making.

Radiolabeling of antibody-mimetic scaffold protein with 99mTc tricarbonyl precursor via hexahistidine (His6)-tag

  • Shim, Ha Eun;Kim, Do Hee;Lee, Chang Heon;Choi, Dae seong;Lee, Dong-Eun
    • 대한방사성의약품학회지
    • /
    • 제5권1호
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, antibody-like scaffold proteins have received a great deal of interest in diagnosis and therapy applications because of their intrinsic features that are often required for tumor imaging and therapy. Intrinsic issues that are associated with therapeutic application of antibody-like scaffold proteins, particularly in cancer treatment, include an efficient and straightforward radiolabeling for understanding in vivo biodistribution and excretion route, and monitoring therapeutic responses. Herein, we report an efficient and straightforward method for radiolabeling of antibody-like scaffold proteins with the $[^{99m}Tc(OH_2)_3(CO)_3]^+$ ($^{99m}Tc$-tricarbonyl) by using a site-specific direct labeling method via hexahistidine-tag, which is a widely used for general purification of recombinant proteins with His-affinity chromatography. Repebody is a new class of antibody-like scaffold protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine ($His_6$)-tag bearing repebody (rEgH9) was labeled with [$^{99m}Tc$]-tricarbonyl. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. These results clearly demonstrate that the present radiolabeling method will be useful molecular imaging study.

Development and validation of LC-MS/MS for bioanalysis of hydroxychloroquine in human whole blood

  • Park, Jung Youl;Song, Hyun Ho;Kwon, Young Ee;Kim, Seo Jin;Jang, Sukil;Joo, Seong Soo
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.130-139
    • /
    • 2018
  • This study aimed to analyze a high-performance liquid chromatography (HPLC) separation using a pentafluorophenyl column of parent drug hydroxychloroquine (HCQ) and its active metabolite, desethylhydroxchloroquine (DHCQ) applying to determine bioequivalence of two different formulations administered to patients. A rapid, simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for bioanalysis of HCQ and its metabolite DHCQ in human whole blood using deuterium derivative $hydroxychloroquine-D_4$ as an internal standard (IS). A triple-quadrupole mass spectrometer was operated using electrospray ionization in multiple reaction monitoring (MRM) mode. Sample preparation involves a two-step precipitation of protein techniques. The removed protein blood samples were chromatographed on a pentafluorophenyl (PFP) column ($50mm{\times}4.6mm$, $2.6{\mu}m$) with a mobile phase (ammonium formate solution containing dilute formic acid) in an isocratic mode at a flow rate of 0.45 mL/min. The standard curves were found to be linear in the range of 2 - 500 ng/mL for HCQ; 2 - 2,000 ng/mL for DHCQ in spite of lacking a highly sensitive MS spectrometry system. Results of intra- and inter-day precision and accuracy were within acceptable limits. A run time of 2.2 min for HCQ and 2.03 min for DHCQ in blood sample facilitated the analysis of more than 300 human whole blood samples per day. Taken together, we concluded that the assay developed herein represents a highly qualified technology for the quantification of HCQ in human whole blood for a parallel design bioequivalence study in a healthy male.

미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징 (Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM))

  • 서정수;장윤관;김태진
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

Hard Ticks as Vectors Tested Negative for Severe Fever with Thrombocytopenia Syndrome in Ganghwa-do, Korea during 2019-2020

  • Jin, Kyoung;Koh, Yeon-Ja;Ahn, Seong Kyu;Cho, Joonghee;Lim, Junghwan;Song, Jaeyong;Lee, Jinyoung;Gong, Young Woo;Kwon, Mun Ju;Kwon, Hyung Wook;Bahk, Young Yil;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • 제59권3호
    • /
    • pp.281-289
    • /
    • 2021
  • This study aimed to characterize the seasonal abundance of hard ticks that transmit severe fever with thrombocytopenia syndrome virus from April to November 2019 and 2020 on Ganghwa-do, Incheon Metropolitan City, Korea. The ticks were collected at grassland, grave site, copse and mountain road using a collection trap method. The ixodid hard ticks comprising three species (Haemaphysalis longicornis, H. flava, and Ixodes nipponensis) collected were 6,622 in 2019 and 3,811 in 2020. H. longicornis was the most frequent (97.9% in 2019 and 96.0% in 2020), followed by H. flava (2.0% and 3.0% in 2019 and 2020, respectively) and I. nipponensis (less than 0.1%). Our study demonstrated that seasonal patterns of the tick populations examined for two years were totally unsimilar. The hard ticks tested using RT-qPCR were all negative for severe fever with thrombocytopenia syndrome virus.

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

심전도와 심음을 측정하기 위한 무선 전자 심전도-심음 청진기 개발 (Development of Wireless Electronic Cardiogram and Stethoscope (ECGS) to Measure ECG Signal and Heart Sound)

  • 조한석;강영환;박재순;최진규;정연호;구치완
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.124-130
    • /
    • 2022
  • In this paper, we proposed a portable electronic cardiogram and stethoscope (ECGS) that can simultaneously perform the electrocardiogram (ECG) and auscultation tests to increase the reliability of diagnosis of heart disease. To measure the ECG and heart sound (HS) at the same time, three ECG electrodes and a microphone sensor were combined into a triangular shape with a width of 90 mm and a height of 97 mm that can be held in one hand. In order to prevent skin problems when they contact the patient's skin, a capacitive coupled electrode was selected as the ECG electrode and a silicone material was used in a chest piece with the microphone sensor. For the signals measured from the electrodes and the chest piece, filters were respectively configured to pass only the signals of 0.01-100 Hz and 20-250 Hz, which are frequency bands for ECG and HS. The filtered ECG and HS analog signals were converted into digital signals and transmitted to a PC using wireless communication for monitoring them. The HS could be auscultated simultaneously using an earphone. The monitored ECG had an SNR of about 34 dB and a P-QRS-T waveform is clearly visible. In addition, the HS had an SNR of about 28 dB and both S1 and S2 are clearly visible. It is expected that it can aid doctors' inexperience in analyzing the ECG and HS.

유연한 열전소재를 이용한 에너지 하베스터 연구개발 동향 (Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials)

  • 박종민;김서하;나유진;박귀일
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.119-128
    • /
    • 2022
  • Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.