• Title/Summary/Keyword: Biomedical Monitoring

Search Result 455, Processing Time 0.029 seconds

A Portable ECG System Coupled with a Smartphone (스마트폰과 연동한 휴대용 심전도계)

  • Kim, Kiwan;An, Jonghyun;Park, Kwangmin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2021
  • The electrocardiogram(ECG) and heart rates are essential for diagnosing heart disease. However, conventional portable ECG devices are possible to only measure heart rates or have limitations in how and where they are measured. In this paper, a portable ECG system in which ECG waveforms and heart rates are displayed on smartphone screens is developed. A smartphone is used as display equipment instead of a computer screen for continuous monitoring. The developed ECG system filters and amplifies detected analog ECG signals. Next, it converts the amplified analog ECG signals into digital signals, then transmits to the smartphone via Bluetooth communication. This ECG system can display and store biomedical signals on a smartphone through the application. As a result, the waveform and heart rates of the developed portable ECG system has been confirmed to be similar to those of existing medical devices.

Development of Realtime Temperature & Humidity Logging and Monitoring System using Ubiquitous Sensor Network (유비쿼터스 센서 네트워크를 이용한 실시간 온.습도 기록 및 모니터링 시스템 개발)

  • Cheon, Seong-Sim;Kim, Jung-Ja;Won, Yong-Gwan;Pham, Hai Trieu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.96-105
    • /
    • 2011
  • Ubiquitos sensor network(USN) is a technology which is widely used in our life. This paper introduces an example of design and implementation for a system which is based on the USN technology and can provide an efficient management tool for a space that should be precisely controlled for a certain range of uniformity in temperature and humidity. This introduced system builds a wireless sensor network using a number of sensor modules that are equipped with temperature and humidity sensors, and collects temperature and humidity information in real-time while simultaneously providing a method for monitoring the status of temperature and humidity by the graphical user interface. Also, the system will give a warning signal if the monitored values are differ from the pre-specified values of temperature and humidity for each sensor module more than a certain amount of tolerance. This temperature and humidity logging and monitoring system can perform better management for the space easily and efficiently by automating the existing manual method for data collection and management. Furthermore, using the stored data, it can make possible to perform post-analysis on the problems caused by temperature and humidity and to obtain information for environmental enhancement for the space.

Implementation of the ECG Monitoring System for Home Health Care Using Wiener Filtering Method (Wiener Filtering 기법을 적용한 홈헬스케어용 심전도 신호 모니터링 시스템 구현)

  • Jeong, Do-Un;Kim, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • The ECG is biomedical electrical signal occurring on the surface of the body due to the contraction and relaxation of the heart. This signal represents an extremely important measure for health monitoring, as it provides vital information about a patient's cardiac condition and general health. ECG signals are contaminated with high frequency noise such as power line interference, muscle artifact and low frequency nose such as motion artifact. But it is difficult to filter nose from ECG signal, and errors resulting from filtering can distort a ECG signal. The present study implemented a small-size and low-power ECG measurement system that can remove motion artifact for convenient health monitoring during daily life. The implemented ECG monitoring system consists of ECG amplifier, a low power microprocessor, bluetooth module and monitoring program. Amplifier was designed and implemented using low power instrumentation amplifier, and microprocessor was interfaced to the ECG amplifier to collect the data, process, store and feed to a transmitter. And bluetooth module used to wirelessly transmit and receive the vital sign data from the microprocessor to an PC at the receiving site. In order to evaluate the performance of the implemented system, we assessed motion artifact rejection performance in each situation with artificially set condition using adaptive filter.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF

Intraoperative Neurophysiological Monitoring and Neuromuscular Anesthesia Depth Monitoring (수술 중 신경계 추적 감시 검사와 근 이완 마취 심도의 측정)

  • Kim, Sang-Hun;Park, Soon-Bu;Kang, Hyo-Chan;Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.317-326
    • /
    • 2020
  • Deep blocking of consciousness alone does not prevent a reaction to severe stimuli, and copious amounts of pain medication do not guarantee unconsciousness. Therefore, anesthesia must satisfy both: the loss of consciousness as well as muscle relaxation. Muscle relaxants improve the intra-bronchial intubation, surgical field of vision, and operating conditions, while simultaneously reducing the dose of inhalation or intravenous anesthesia. Muscle relaxants are also very important for breathing management during controlled mechanical ventilation during surgery. Excessive dosage of such muscle relaxants may therefore affect neurological examinations during surgery, but an insufficient dosage will result in movement of the patient during the procedure. Hence, muscle relaxation anesthesia depth and neurophysiological monitoring during surgery are closely related. Using excessive muscle relaxants is disadvantageous, since neurophysiological examinations during surgery could be hindered, and eliminating the effects of complete muscle relaxation after surgery is challenging. In the operation of neurophysiological monitoring during the operation, the anesthesiologist administers muscle relaxant based on what standard, it is hoped that the examination will be performed more smoothly by examining the trends in the world as well as domestic and global trends in maintaining muscle relaxant.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

A Pilot Study for the Remote Monitoring of IMRT Using a Head and Neck Phantom (원격 품질 보증 시스템을 사용한 세기변조 방사선치료의 예비 모니터링 결과)

  • Han, Young-Yih;Shin, Eun-Hyuk;Lim, Chun-Il;Kang, Se-Kwon;Park, Sung-Ho;Lah, Jeong-Eun;Suh, Tae-Suk;Yoon, Myong-Geun;Lee, Se-Byeong;Ju, Sang-Gyu;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.249-260
    • /
    • 2007
  • Purpose: In order to enhance the quality of IMRT as employed in Korea, we developed a remote monitoring system. The feasibility of the system was evaluated by conducting a pilot study. Materials and Methods: The remote monitoring system consisted of a head and neck phantom and a user manual. The phantom contains a target and three OARs (organs at risk) that can be detected on CT images. TLD capsules were inserted at the center of the target and at the OARs. Two film slits for GafchromicEBT film were located on the axial and saggital planes. The user manual contained an IMRT planning guide and instructions for IMRT planning and the delivery process. After the manual and phantom were sent to four institutions, IMRT was planed and delivered. Predicted doses were compared with measured doses. Dose distribution along the two straight lines that intersected at the center of the axial film was measured and compared with the profiles predicted by the plan. Results: The measurements at the target agreed with the predicted dose within a 3% deviation. Doses at the OARs that represented the thyroid glands showed larger deviations (minimum 3.3% and maximum 19.8%). The deviation at OARs that represented the spiral cord was $0.7{\sim}1.4%$. The percentage of dose distributions that showed more than a 5% of deviation on the lines was $7{\sim}27%$ and $7{\sim}14%$ along the horizontal and vertical lines, respectively. Conculsion: Remote monitoring of IMRT using the developed system was feasible. With remote monitoring, the deviation at the target is expected to be small while the deviation at the OARs can be very large. Therefore, a method that is able to investigate the cause of a large deviation needs to be developed. In addition, a more clinically relevant measure for the two-dimensional dose comparison and pass/fail criteria need to be further developed.

A study on the sleeve-shaped platform of POF-based joint angle sensor for arm movement-monitoring clothing (인체동작 모니터링 위한 광섬유 기반 의류 소매형 동작센서 연구)

  • Kang, Da-Hye;Lee, Young-Jae;Lee, Jeong-Whan;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.221-226
    • /
    • 2011
  • Although diverse researches on sensing method of human movement have been performed, there are still many limitations to the existing methods. As a part of supplementing the limitations to the existing motion sensing methods, this study aimed to execute an exploratory examination on a POF-based sleeve-shaped motion sensor for less restrictive sensing of human movement. In this study, a set of POF-based motion sensor, which was embedded in a sleeve-shaped platform was devised, and a set of exploratory experiments was performed on the possibility of sensing of human movement as diverse as in daily life, through this device. The scope of this research was limited to an exploration on the possibility and basic elements of POF-based sleeve-shaped motion sensor, while the influence of sleeve patterns, those of wearer's somatotype, those of sewing method were not studied in this study. When compared to the pre-existing methods, the POF-based motion sensor platformed on sleeve in this study, which was purposively devised to be applied to the motion sensing clothing shows some beneficial characteristics : more sensitive measurement on human motion, low cost, no timely restriction in sensing, no request for gigantic apparatus and space for sensing.

  • PDF

The Effects of Karvonen Exercise Prescription in Acute Coronary Artery Disease Patients Reaching Age-Predicted Maximal Heart Rates with Exercise Stress Test

  • Kim, Chul;Kim, Young-Joo
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.254-260
    • /
    • 2013
  • The purpose of this study was to survey the effects of Karvonen exercise prescription in coronary artery disease patients reaching age-predicted maximal heart rates with the exercise stress test on hemodynamic responses and cardiorespiratory fitness. The subject group was comprised of acute coronary syndrome (ACS) patients, who were divided into the maximal heart rate (MHR) group that included those who completed the test with their heart rates reaching the number of 220-age and the maximal dyspnea (MD) group that included those who could not continue the test due to respiratory difficulty and were asked to stop the test. Both groups had the exercise stress test before and after the experiment. In the exercise stress test before the experiment, the exercise prescription intensity of Karvonen was set at the target heart rates of 50~85% with a six-week exercise monitoring arrangement. As a result, there were no interactive effects in rest heart rate (RHR) according to time and group, but interactive effects were observed in maximal heart rate (MHR) (P=0.000). Both rest systolic blood pressure (RSBP) and rest diastolic blood pressure (RDBP) had no interactive effects according to time and group. Maximal systolic blood pressure (MSBP) showed significant interactive effects according to time and group (P=0.017). Maximal diastolic blood pressure (MDBP) showed no interactive effects according to time and group, while maximal rate pressure product (MRPP) showed significant interactive effects according to time and group (P=0.003). Maximal time (MT) had no interactive effects according to time and group. $VO_{2max}$ and maximal metabolic equivalent (MMET) showed significant interactive effects according to time and group (P=0.000, P=0.002, respectively), whereas maximal respiratory exchange ratio (MRER) and maximal rating of perceived exertion (MRPE) showed no interactive effects according to time and group. The exercise test that was discontinued as the subjects reached the predicted maximal heart rates considering age did not reach the maximal exercise intensity and accordingly showed low exercise effects when applied to Karvonen exercise prescription intensity. That is, the test should keep going by monitoring cardiac events, MRER and MRPE until the heart rates exceed the predicted MHR by up to 10~12 even after the subject reaches the predicted MHR considering age in the exercise stress test.