• 제목/요약/키워드: Biomedical Monitoring

검색결과 455건 처리시간 0.019초

A Portable IoT-cloud ECG Monitoring System for Healthcare

  • Qtaish, Amjad;Al-Shrouf, Anwar
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.269-275
    • /
    • 2022
  • Public healthcare has recently become an issue of great importance due to the exponential growth in the human population, the increase in medical expenses, and the COVID-19 pandemic. Speed is one of the crucial factors in saving life, particularly in case of heart attack. Therefore, a healthcare device is needed to continuously monitor and follow up heart health conditions remotely without the need for the patient to attend a medical center. Therefore, this paper proposes a portable electrocardiogram (ECG) monitoring system to improve healthcare for heart attack patients in both home and ambulance settings. The proposed system receives the ECG signals of the patient and sends the ECG values to a MySQL database on the IoT-cloud via Wi-Fi. The signals are displayed as an ECG data chart on a webpage that can be accessed by the patient's doctor based on the HTTP protocol that is employed in the IoT-cloud. The proposed system detects the ECG data of the patient to calculate the total number of heartbeats, number of normal heartbeats, and the number of abnormal heartbeats, which can help the doctor to evaluate the health status of the patient and decide on a suitable medical intervention. This system therefore has the potential to save time and life, but also cost. This paper highlights the five main advantages of the proposed ECG monitoring system and makes some recommendations to develop the system further.

인공호흡기 원격 통합 모니터링 및 제어 시스템 개발을 위한 소프트웨어 위험관리 및 사이버보안 (Software Risk Management and Cyber Security for Development of Integrated System Remotely Monitoring and Controlling Ventilators)

  • 정지용;김유림;장원석
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.99-108
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.

광전용적맥파 센서를 이용한 맥파전달시간의 측정 (Measurement of Cardiac Pulse Transit Time using Photoplethysmography Sensor)

  • 최병철;정동근;정도운;노정훈;전계록
    • 센서학회지
    • /
    • 제13권5호
    • /
    • pp.383-391
    • /
    • 2004
  • In this study, we implemented the pulse transit time (PTT) system to examine usefulness of the monitoring method of distensibility and elasticity using photoplethysmography sensor in vivo. PTT is defined as the time interval between the peak of QRS complex in ECG signal and the maximum slope point of photoplethysmography. these two signals were converted to digital data by means of AID converter, then PTT was evaluated by heartbeat using PC. Results of analysis were displayed as a graph using spline interpolation method. The variance of PTT was measured repetitiously to verify efficiency of PTT system in resting state and hyperemic state. Repeated measurement of PTT was not same value but showed that coefficients of correlation were related with each other as 0.8302 (P<0.01) in resting state. And also repeated measurement of PTT showed significant correlation as 0.868 (P<0.01) in the hyperemic state. These result showed that PTT is reflect on transient pressure variance in the artery and is very useful method for the evaluation of prognosis of the hypertension and arteriosclerosis.

불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향 (The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture)

  • 은혜인;유미;김동욱;권대규;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권5호
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.

Monitoring of emaciation disease in cultured Paralichthys olivaceus of Jeju island during 2014-2015

  • Kim, Seung Min;Jun, Lyu Jin;Lee, Da Won;Park, Hyun Kyung;Jeong, Hyun Do;Kim, Jong Sung;Jeong, Joon Bum
    • Fisheries and Aquatic Sciences
    • /
    • 제21권6호
    • /
    • pp.17.1-17.7
    • /
    • 2018
  • This study investigated the trend in emaciation infection outbreak in olive flounder (Paralichthys olivaceus) of Jeju island, South Korea, during 2014-2015. A total of 900 fish were systematically examined by PCR method using the EM-F/EM-R primer set in April, May, September, November, and December 2014, and the infection rate was recorded. In 2015, the same examination was conducted in March, May, July, and October but with 660 fish. It was found that the infection rate was 18.3~71.6% in 2014, which increased to 16.3~90.3% in 2015. Furthermore, September and December in 2014 and March, July, and October in 2015 showed a relatively higher infection rate. According to the infection trend analysis, which depended on the sample size, the infection occurred in all of fish sizes in this study and 11~30 cm fish group showed the highest infection rate. Histological examination confirmed that the kidney areas of the emaciating infected olive flounder contained several spores of $4{\sim}9{\mu}m$, and in severe cases, the elimination and destruction of tissue were confirmed by PCR. Thus, an important portion of farmed olive flounders in the Jeju region suffers from emaciation disease. This epidemiological survey serves as a useful reference on the emaciation disease of cultured olive flounders in Jeju

Forensic STR Analysis of Mixed Chimerism after Allogeneic Bone Marrow Transplantation

  • Eom, Yong-Bin
    • 대한의생명과학회지
    • /
    • 제16권3호
    • /
    • pp.193-196
    • /
    • 2010
  • Multiplex PCR-based short tandem repeat (STR) analysis is considered as a good tool for monitoring bone marrow engraftment after sex-mismatched allogeneic transplantation and provides a sensitive and accurate assessment of the contribution of both donor and/or recipient cells in post-transplantation specimens. Forensic STR analysis and quantitative real time PCR are used to determine the proportion of donor versus recipient each contained within the total DNA. The STR markers were co-amplified in a single reaction by using commercial $PowerPlex^{(R)}$ 16 system and $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ / $Yfiler^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI $PRIS^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The $GeneMapper^{TM}$ ID software were used for size calling and analysis of STR profiles. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA / Y Human Male DNA Quantification Kit The intent of this study was to analyze the ratio of donor versus recipient cells in the post-transplant peripheral blood, spleen, lung and kidney specimens. Specimens were taken from the traffic accident male victim who had been engrafted from bone marrow female donor. Blood and spleen specimens displayed female donor DNA profile. Kidney specimen showed male recipient DNA profile. Interestingly, lung tissue showed mixed profiles. The findings of this study indicate that the forensic STR analysis using fluorescence labeling PCR combined with capillary electrophoresis is quick and reliable enough to assess the ratio of donor versus recipient cells and to monitor the mixed chimeric patterns.

2.4GHz 도플러 레이더를 이용한 비접촉 방식의 심박 및 호흡 모니터링 시스템 (Noncontact Respiration and Heartbeat Monitoring System using the Doppler Radar System)

  • 신재연;조성필;장병준;박호동;이경중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.478-479
    • /
    • 2008
  • 본 연구에서는 비접촉 방식으로 심박과 호흡을 측정하기 위해 2.4GHz 대역에서 동작하는 도플러 레이더 센서와 베이스밴드 모듈로 구성된 도플러 레이더 시스템을 설계하고 그 성능을 평가하였다. 설계된 도플러 레이더 시스템은 심폐활동에 의한 흉부 표면의 움직임에 의해 반사되는 레이더의 위상변화를 이용하여 심폐 활동을 측정한다. 도플러 레이더 센서의 출력은 베이스 밴드 모듈의 전처리 필터부, 증폭부, 오프셋 조정부를 통과하여 호흡과 심박 신호로 분리된다. 분리된 생체신호는 기존의 생체신호와 상관성을 확인하기 위해 기준신호로 호흡과 심전도를 동시에 측정하여 그 결과를 비교 및 분석하였다. 설계된 도플러 레이더 시스템에서 분리된 호흡 및 심박 신호는 측정 대상의 움직임이 없는 상태에서는 높은 검출률을 보였으며, 도플러 레이더에서 심박과 호흡 신호를 검출한 결과 거리, 호흡과 심박의 변이량, 호흡과 심박대역에 따라 검출률이 영향을 받는다는 것을 알 수 있었다.

  • PDF

심폐소생술에서 두 개의 가속도 센서를 활용한 흉부 압박 깊이 추정 (Estimation of Chest Compression Depth using two Accelerometers during CPR)

  • 송영탁;오재훈;서영수;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.407-411
    • /
    • 2010
  • During the cardiopulmonary resuscitation (CPR), the correct chest compression depth and period are very important to increase the resuscitation possibility. For the feedback of chest compression depth, the depth monitoring device based on the accelerometer is developed and widely used. But this method tends to overestimate the compression depth on the bed. To overcome this limitation, the chest compression depth estimation method using two accelerometers is suggested With the additional accelerometer between the patient and mattress on the bed, the compression of the mattress is also measured and it is used to compensate the overestimation error. The experimental results show that the single accelerometer estimates as 61.4mm for the actual compression depth of 43.6mm on the mattress. The depth estimation with the dual accelerometer was 44.6mm which is close to the actual depth. With the automatic zeroing in every single compression, the integration error for the depth can be reduced. The dual accelerometer method is effective to increase the accuracy of the chest compression depth estimation.

Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations

  • Park, Seongbeom;Yoon, Uicheul
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권2호
    • /
    • pp.82-88
    • /
    • 2017
  • Enlargement of the lateral ventricles have been identified as a surrogate marker of neurological disorders. Quantitative measure of the lateral ventricle from MRI would enable earlier and more accurate clinical diagnosis in monitoring disease progression. Even though it requires an automated or semi-automated segmentation method for objective quantification, it is difficult to define lateral ventricles due to insufficient contrast and brightness of structural imaging. In this study, we proposed a fully automated lateral ventricle segmentation method based on a graph cuts algorithm combined with atlas-based segmentation and connected component labeling. Initially, initial seeds for graph cuts were defined by atlas-based segmentation (ATS). They were adjusted by partial volume images in order to provide accurate a priori information on graph cuts. A graph cuts algorithm is to finds a global minimum of energy with minimum cut/maximum flow algorithm function on graph. In addition, connected component labeling used to remove false ventricle regions. The proposed method was validated with the well-known tools using the dice similarity index, recall and precision values. The proposed method was significantly higher dice similarity index ($0.860{\pm}0.036$, p < 0.001) and recall ($0.833{\pm}0.037$, p < 0.001) compared with other tools. Therefore, the proposed method yielded a robust and reliable segmentation result.

스마트워치에 기반한 맥박변이도를 이용한 심박변이도 예측 연구 (Comparison of Smart Watch Based Pulse Rate Variability with Heart Rate Variability)

  • 김창진;우지환
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권2호
    • /
    • pp.87-93
    • /
    • 2018
  • The measurement of Heart Rate Variability (HRV) using electrocardiogram (ECG) signals has been used to predict fatigue and stress levels in a clinical environment, yet, owing to the complexity of such ECG systems, a domestic, nonclinical monitoring of HRV has not been a practical possibility. Recently though, Pulse Rate Variability (PRV) has been studied as an alternative to HRV. In this study, we investigated the reliability of measuring PRV by means of a smartwatch. The PRV results were compared to HRV results in similar test conditions, i.e. those obtained under rapid and deep-breathing scenarios. From the results obtained, it transpires that the Bland-Altman ratio and cross-correlation coefficients between several PRV and HRV parameters were highly correlated, thus suggesting that the results of measuring PRV using a smartwatch can be used to predict HRV in nonclinical environments.