• Title/Summary/Keyword: Biomedical Monitoring

Search Result 455, Processing Time 0.019 seconds

Development of a Module-Based Bedside Monitor for Patient Monitoring (모듈형 환자 모니터의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.133-146
    • /
    • 1997
  • In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases, each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO with plethysmograph.raph.

  • PDF

Remote Health Monitoring of Parkinson's Disease Severity Using Signomial Regression Model (파킨슨병 원격 진단을 위한 Signomial 회귀 모형)

  • Jeong, Young-Seon;Lee, Chung-Mok;Kim, Nor-Man;Lee, Kyung-Sik
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.365-371
    • /
    • 2010
  • In this study, we propose a novel remote health monitoring system to accurately predict Parkinson's disease severity using a signomial regression method. In order to characterize the Parkinson's disease severity, sixteen biomedical voice measurements associated with symptoms of the Parkinson's disease, are used to develop the telemonitoring model for early detection of the Parkinson's disease. The proposed approach could be utilized for not only prediction purposes, but also interpretation purposes in practice, providing an explicit description of the resulting function in the original input space. Compared to the accuracy performance with the existing methods, the proposed algorithm produces less error rate for predicting Parkinson's disease severity.

Bed Side Monitoring System using Occupancy Sensor and Doppler Radar (Occupancy 센서와 도플러 Radar를 이용한 침상 모니터링 시스템)

  • Kang, Byung Wuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.382-390
    • /
    • 2018
  • A major accident occurring on the bed is falls that occur during at times when the care of nurses or protectors is inadequate, which is fatal to patients or the elderly. In particular, Enuresis or sleepiness caused by sleep apnea increases the risk of falls. Therefore, it is very important to detect falls and sleep apnea of patients without infringing privacy in the bed to patient's safety and accident prevention. In this paper, we reviewed the technologies developed for bed monitoring and implemented a non-intrusive monitoring system. The Occupancy Sensor allows the temperature of the bed and surrounding area to be extracted to enable track of the patient's motion. The Doppler Radar detects the patient's movements at normal times and the respiration state when patients have no movement during sleeping. It is specially designed for real-time monitoring of falling and respiration during sleeping through contactless multi-sensing while solving patient's privacy problems.

Motion Artifacts reduction from the PPG based on the Improved PMAF for the U-Healthcare System (U-헬스케어 시스템을 위한 개선된 PMAF 기반의 PPG 신호의 동잡음 제거)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Jun, Jae-Chul;Lee, Gun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.28-34
    • /
    • 2008
  • The real-time biomedical signal monitoring is a very important factor to realize the ubiquitous healthcare environment. Most of these devices for monitoring the biomedical information get the PPG signal from the user, and these signals are utilized for monitoring their health. It is inconvenient to get the PPG because the user should wear the finger probe with his finger for measuring the PPG signal. Also it is difficult to get the PPG correctly, because of the motion artifacts from the movement of the user. In this paper, we develop the watch type biomedical signal monitoring system without the finger probe, and propose the new algorithm for reducing the motion artifacts from the PPG signal. We designed the system which gets the PPG from the sensor on the wrist band strip. As compared with the finger probe type, this system we proposed is more affected by the motion artifacts. So to filter this motion artifacts, we propose the new method; the improved PMAF(Periodic Moving Average Filter) method.

Study of Modeling for Stock Food Material with Location Movement by the Communication Signal System

  • Kim, Jeong-Lae;Kim, Jung-Yun;Rha, Young-Ah
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • We are invented the movement composition technique that is to check the food adjacent-package status of the wireless-management movement monitoring level (WMMML) on the movement monitoring communication system. The movement monitoring level condition by the movement monitoring communication system is formatted with the adjacent-package system. As to inspection a wireless RFID of the wireless RFID, we are found of the movement value with wireless RFID by the adjacent upper take form. The concept of movement monitoring level is formatted the reference of wireless-management level for composition signal by the movement package communication system. Further symbolizing a food composition of the WMMML of the medium-minimum in terms of the adjacent-package communication system, and the movement wireless RFID package that was the movement value of the far composition of the Mo-MMCS-FA-φMED-MIN with 5.80±1.20 units, that was the movement value of the convenient composition of the Mo-MMCS-CO-φMED-MIN with 4.06±(-0.04) units, that was the movement value of the flank composition of the Mo-MMCS-MO-φMED-MIN with 0.91±0.07 units, that was the movement value of the vicinage composition of the Mo-MMCS-VI-φMED-MIN with 0.18±(-0.03) units. The adjacent package will be to look into at the food ability of the adjacent-package communication system with wireless RFID by the movement monitoring level on the WMMML that is supply the wireless communication by the movement monitoring level system. We will be possible to make effort of a communication system by the management signal and to put to use of the delivery data of RFID level by the delivery system.

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.

A Study on Important Problem Features of Hospitalized Senile Dementia Patients (시설에 있는 치매노인의 주요문제특성에 대한 기초 연구)

  • Kim, Hyun-Jun;Lee, Hang-Woon;You, Ji-Hae;Choi, Mi-Hyun;Eom, Jin-Sup;Lee, Jeong-Whan;Tack, Gye-Rae;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.373-381
    • /
    • 2007
  • The purpose of this study was to extract important problem features for care of senile dementia patients. Selected cognitive ability test (Korean Mini-Mental State Examination: K-MMSE) and survey of basic & problem characteristics were conducted on 110 hospitalized senile dementia patients and 30 normal subjects. Problem features of senile dementia patients were extracted using factor analysis. The frequency difference of problem features due to the gender and dementia severities was verified using one-way ANOVA. Twenty problem features were extracted by the factor analysis. According to the gender, there are significant differences in the frequency of problem features in violent language & confabulation, collecting behavior, and repetitive behavior. According to the dementia severities, there are significant differences in the frequency of all problem features except abnormal sexual behavior and audio-visual disorder. The result of this study is expected to be used for the development of the senile dementia patients' life-care monitoring system.

  • PDF

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.

Development of a Knee Exoskeleton for Rehabilitation Based EMG and IMU Sensor Feedback (단계별 무릎 재활을 위한 근전도 및 관성센서 피드백 기반 외골격 시스템 개발)

  • Kim, Jong Un;Kim, Ga Eul;Ji, Yeong Beom;Lee, A Ram;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.223-229
    • /
    • 2019
  • The number of knee-related disease patients and knee joint surgeries is steadily increasing every year, and for knee rehabilitation training for these knee joint patients, it is necessary to strengthen the muscle of vastus medialis and quadriceps femoris. However, because of the cost and time-consuming difficulties of receiving regular hospital treatment in the course of knee rehabilitation, we developed knee exoskeleton using rapid prototype for knee rehabilitation with feedback from the electromyogram (EMG) and inertia motion unit (IMU) sensor. The modules was built on the basis of EMG and an IMU sensor applied complementary filter, measuring muscle activity in the vastus medialis and the range of joint operation of the knee, and then performing the game based on this measurement. The IMU sensor performed up to 97.2% accuracy in experiments with ten subjects. The functional game contents consisted of an exergaming platform based on EMG and IMU for the real-time monitoring and performance assessment of personalized isometric and isotonic exercises. This study combined EMG and IMU-based functional game with knee rehabilitation training to enable voluntary rehabilitation training by providing immediate feedback to patients through biometric information, thereby enhancing muscle strength efficiency of rehabilitation.

Adhesive Polyurethane-based Capacitive Electrode for Patch-type Wearable Electrocardiogram Measurement System (패치형 웨어러블 심전도 측정 시스템을 위한 접착성 폴리우레탄 기반의 용량성 전극)

  • Lee, Jeong Su;Lee, Won Kyu;Lim, Yong Gyu;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.203-210
    • /
    • 2014
  • Wearable medical device has been a resurgence of interest thanks to the development of technology and propagation of smart phone in recent years. Various types of wearable devices have been introduced and available in market. Capacitive coupled electrode which measures electrocardiogram over cloth is able to be applied wearable device. In previous approaches of capacitive electrode, they need proper pressure for stable contact of the electrode to body surface. However, wearable device that gives pressure on body surface is not suitable for long-term monitoring. In this study, we proposed adhesive polyurethane-based capacitive electrode for patch-type wearable electrocardiogram (ECG) monitoring device. Self-adhesive polyurethane make the electrode and whole system be adhered to the surface of skin without any pressure. The patch-type system is consisted of analog filter, analog-to-digital converter and wireless transmission module and designed to be attached on the body as a patch. To validate the feasibility of the developed system, we measured ECG signal in stable and active state and extracted heart rate. Therefore, we observed skin response after long-term attachment for biocompatibility of the adhesive polyurethane and adhesive strength of it. The result shows the possibility of applying the developed system for ECG monitoring in real-life.