• Title/Summary/Keyword: Biomedical Data Transmission

Search Result 72, Processing Time 0.026 seconds

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

Seroprevalence of Plasmodium vivax in the Republic of Korea (2003-2005) using Indirect Fluorescent Antibody Test

  • Kim, Tong-Soo;Kang, Yoon-Joong;Lee, Won-Ja;Na, Byoung-Kuk;Moon, Sung-Ung;Cha, Seok Ho;Lee, Sung-Keun;Park, Yun-Kyu;Pak, Jhang-Ho;Cho, Pyo Yun;Sohn, Youngjoo;Lee, Hyeong-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Plasmodium vivax reemerged in the Republic of Korea (ROK) in 1993, and is likely to continue to affect public health. The purpose of this study was to measure levels of anti-P. vivax antibodies using indirect fluorescent antibody test (IFAT) in border areas of ROK, to determine the seroprevalence of malaria (2003-2005) and to plan effective control strategies. Blood samples of the inhabitants in Gimpo-si, Paju-si, and Yeoncheon-gun (Gyeonggi-do), and Cheorwon-gun (Gangwon-do) were collected and kept in Korea Centers for Disease Control and Prevention (KCDC). Out of a total of 1,774 serum samples tested, the overall seropositivity was 0.94% (n=17). The seropositivity was the highest in Paju-si (1.9%, 7/372), followed by Gimpo-si (1.4%, 6/425), Yeoncheon-gun (0.67%, 3/451), and Cheorwon-gun (0.19%, 1/526). The annual parasite incidence (API) in these areas gradually decreased from 2003 to 2005 (1.69, 1.09, and 0.80 in 2003, 2004, and 2005, respectively). The highest API was found in Yeoncheon-gun, followed by Cheorwon-gun, Paju-si, and Gimpo-si. The API ranking in these areas did not change over the 3 years. The seropositivity of Gimpo-si showed a strong linear relationship with the API of 2005 (r=0.9983, P=0.036). Seropositivity data obtained using IFAT may be useful for understanding malaria prevalence of relevant years, predicting future transmission of malaria, and for establishing and evaluating malaria control programs in affected areas.

M2M Technology based Global Heathcare Platform (M2M 기반의 글로벌 헬스케어 시스템 플랫폼)

  • Jung, Sang-Joong;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2435-2441
    • /
    • 2010
  • A global healthcare system based on M2M technology is proposed to support a good mobility, flexibility and scalability to the patients in 6LoWPAN. Sensor nodes integrated with wearable sensors are linked to gateway with IEEE 802.15.4 protocol and 6LoWPAN protocol for data acquisition and transmission purpose via external network. In the server, heart rate variability signals are obtained by signal processing and used for time and frequency domain performance analysis to evaluate the patient's health status. Our approach for global healthcare system with non-invasive and continuous IP-based communication is managed to process large amount of biomedical signals in the large scale of service range accurately.

Intelligent Safe Network Technology for the Smart Working Environments based on Cloud (클라우드 기반 스마트 사무환경 구축을 위한 지능형 세이프 네트워크 기술)

  • Kim, Seok-Hoon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.345-350
    • /
    • 2014
  • According to the necessity of smart working with various mobile devices, and the increasing services based on the converged infrastructures such as Cloud, Wearable Computing, Next Generation Wired/Wireless Mobile Networks, the network reliability has been one of the most important things. However, the research related to the network reliability is still insufficient. To solve these problems, we propose the ISNTC (Intelligent Safe Network Technology based on Cloud), which uses the safe network technique based on SDN, to be adopted to the smart working environments. The proposed ISNTC guarantees secure data forwarding through the synchronized transmission path and timing. We have verified the throughput which outperformed the existing techniques through the computer simulations using OPnet.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Evaluation of the Effectiveness of Surveillance on Improving the Detection of Healthcare Associated Infections (의료관련감염에서 감시 개선을 위한 평가)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.15-25
    • /
    • 2019
  • The development of reliable and objective definitions as well as automated processes for the detection of health care-associated infections (HAIs) is crucial; however, transformation to an automated surveillance system remains a challenge. Early outbreak identification usually requires clinicians who can recognize abnormal events as well as ongoing disease surveillance to determine the baseline rate of cases. The system screens the laboratory information system (LIS) data daily to detect candidates for health care-associated bloodstream infection (HABSI) according to well-defined detection rules. The system detects and reserves professional autonomy by requiring further confirmation. In addition, web-based HABSI surveillance and classification systems use discrete data elements obtained from the LIS, and the LIS-provided data correlates strongly with the conventional infection-control personnel surveillance system. The system was timely, acceptable, useful, and sensitive according to the prevention guidelines. The surveillance system is useful because it can help health care professionals better understand when and where the transmission of a wide range of potential pathogens may be occurring in a hospital. A national plan is needed to strengthen the main structures in HAI prevention, Healthcare Associated Prevention and Control Committee (HAIPCC), sterilization service (SS), microbiology laboratories, and hand hygiene resources, considering their impact on HAI prevention.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Acupuncture Analgesia : A Sensory Stimulus Induced Analgesia Observed by functional Magnetic Resonance Imaging (침의 진통효과: 체성감각신경자극으로 유도된 진통작용에 대한 기능성자기공명영상장치를 이용한 연구)

  • Cho, Zang-hee;Hwang, Seon-chool;Son, Young-don;Kang, Chang-ki;Wong, Edward K.;Bai, Sun-joon;Lee, Un-jung;Sung, Kang-kyung;Park, Tae-seok;Kim, Young-bo;Min, Hoon-ki;Oleson, Terry
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.57-71
    • /
    • 2004
  • Objective : Physiological evidence regarding acupuncture's effect in human patients is not yet well established, despite considerable evidence for its therapeutic efficacy. Besides target or disease specificity of acupuncture, acupuncture analgesia (AA) appears to be another large subclass that poses many questions, such as whether there is point specificity with respect to which acupoint is most effective for a particular condition. Methods : We observed brain activation with functional magnetic resonance imaging (fMRI) using a set of stimuli that consist of pain, pain following Meridian acupuncture, and pain following Sham acupuncture. Results : Among the new observations, the most interesting fact is that data sets of both Meridian acupuncture and Sham acupuncture show decreased activation of the same brain areas related to the pain processing signals. Present functional MRI study demonstrate two important biological observations that could elucidate AA mechanism in human participants: the effects of acupuncture occur through mediation of the higher brain areas. Sham acupuncture stimulation appears to be almost as effective as traditional Meridian acupoint stimulation, suggesting that acupuncture is not entirely point specific. Decreased activation in the limbic paleo cortical areas appears to be the probable neurological manifestation of AA and strongly implies that acupuncture stimulation inhibits the transmission of ascending pain signals to the higher cortical areas by the previously known descending pain inhibitory circuit. Conclusion : We, therefore, a hypothesized that this pain inhibitory circuit is initiated and mediated via the broad sense Hypothalamus Pituitary Adrenal (BS HPA) axis in conjunction to the "sensory stimulation."

  • PDF

The Design of Mobile Medical Image Communication System based on CDMA 1X-EVDO for Emergency Care (CDMA2000 1X-EVDO망을 이용한 이동형 응급 의료영상 전송시스템의 설계)

  • Kang, Won-Suk;Yong, Kun-Ho;Jang, Bong-Mun;Namkoong, Wook;Jung, Hai-Jo;Yoo, Sun-Kook;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.53-55
    • /
    • 2004
  • In emergency cases, such as the severe trauma involving the fracture of skull, spine, or cervical bone, from auto accident or a fall, and/or pneumothorax which can not be diagnosed exactly by the eye examination, it is necessary the radiological examination during transferring to the hospital for emergency care. The aim of this study was to design and evaluate the prototype of mobile medical image communication system based on CDMA 1X EVDO. The system consists of a laptop computer used as a transmit DICOM client, linked with cellular phone which support to the CDMA 1X EVDO communication service, and a receiving DICOM server installed in the hospital. The DR images were stored with DICOM format in the storage of transmit client. Those images were compressed into JPEG2000 format and transmitted from transmit client to the receiving server. All of those images were progressively transmitted to the receiving server and displayed on the server monitor. To evaluate the image quality, PSNR of compressed image was measured. Also, several field tests had been performed using commercial CDMA2000 1X-EVDO reverse link with the TCP/IP data segments. The test had been taken under several velocity of vehicle in seoul areas.

  • PDF

A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems (방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구)

  • Ha, Woo-Seok;Kim, Soo-Mee;Park, Min-Jae;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.459-467
    • /
    • 2009
  • Purpose: The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Materials and Methods: Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. Results: The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 see, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 see, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. Conclusion: The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries.