• Title/Summary/Keyword: Biomedical Applications

Search Result 764, Processing Time 0.025 seconds

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation (고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자)

  • Choo, Seung Hee;Park, Jion;Kim, Tae Eun;Gang, Tae Gyeoung;An, Jun Seok;Oh, Gayeong;Kim, Yeojin;Park, Kyu Been;Park, Chaewon;Lee, Minjeong;Lim, Hyunjung;Nam, Jeonghun
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.170-176
    • /
    • 2022
  • Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μl/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 ㎛) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μl/min and the applied voltage of 20 Vpp can be used for size-based particle separation.

Gene Expression of Early Growth Response Protein 1 in INS-1 Pancreatic β-cells Treated with Allomyrina dichotoma Hemolymph (췌장 β-세포에서 Allomyrina dichotoma 혈림프 처리에 의한 EGR1유전자 발현)

  • Kwon, Kisang;Lee, Eun-Ryeong;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.425-429
    • /
    • 2021
  • We have investigated the expression of early growth response protein 1 (EGR1) in INS-1 pancreatic β-cells treated with Allomyrina dichotoma hemolymph. The Korean rhinoceros beetle, A. dichotoma (Coleoptera: Scarabaeidae), is important in the insect industry for medical applications. We have already established a method for purification of A. dichotoma hemolymph that can be used in many experiments. EGR1 is reported as a multifunctional transcription factor that is implicated in virus infections. EGR1 has therefore been revealed as a major mediator and regulator in the physiological and pathological conditions of several cell and tissue types. New findings in this study are that A. dichotoma hemolymph, which promotes a dose- and time-dependent upregulation of EGR1 gene expression, shows an enhancement of this gene expression when combined with hypothermia or endoplasmic reticulum (ER) stress. These results suggest that A. dichotoma hemolymph may provide clues to EGR1-associated disease therapies involving gene regulation of EGR1.

Calibration of cylindrical NaI(Tl) gamma-ray detector intended for truncated conical radioactive source

  • Badawi, Mohamed S.;Thabet, Abouzeid A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1421-1430
    • /
    • 2022
  • The computation of the solid angle and the detector efficiency is considering to be one of the most important factors during the measuring process for the radioactivity, especially the cylindrical γ-ray NaI(Tl) detectors nowadays have applications in several fields such as industry, hazardous for health, the gamma-ray radiation detectors grow to be the main essential instruments in radiation protection sector. In the present work, a generic numerical simulation method (NSM) for calculating the efficiency of the γ-ray spectrometry setup is established. The formulas are suitable for any type of source-to-detector shape and can be valuable to determine the full-energy peak and the total efficiencies and P/T ratio of cylindrical γ-ray NaI(Tl) detector setup concerning the truncated conical radioactive source. This methodology is based on estimate the path length of γ-ray radiation inside the detector active medium, inside the source itself, and the self-attenuation correction factors, which typically use to correct the sample attenuation of the original geometry source. The calculations can be completed in general by using extra reasonable and complicate analytical and numerical techniques than the standard models; especially the effective solid angle, and the detector efficiency have to be calculated in case of the truncated conical radioactive source studied condition. Moreover, the (NSM) can be used for the straight calculations of the γ-ray detector efficiency after the computation of improvement that need in the case of γ-γ coincidence summing (CS). The (NSM) confirmation of the development created by the efficiency transfer method has been achieved by comparing the results of the measuring truncated conical radioactive source with certified nuclide activities with the γ-ray NaI(Tl) detector, and a good agreement was obtained after corrections of (CS). The methodology can be unlimited to find the theoretical efficiencies and modifications equivalent to any geometry by essential sufficiently the physical selective considered situation.

Cellular internalization effect of Ara27 in various cell lines

  • Minseo Kim;Sangkyu Park;Jeongmin Seo;Sangho Roh
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Protein and peptide candidates are screened to apply therapeutic application as a drug. Ensuring that these candidates are delivered and maximized effectiveness is still challenging and a variety of studies are ongoing. As drug delivery system vehicles, cell-penetrating peptide (CPP) can deliver various kinds of cargo into the cell cytosol. In a previous study, we developed Ara27 CPP, which are a zinc knuckle family protein of Arabidopsis, and confirmed internalization in human dermal fibroblasts and human dental pulp stem cells at low concentration with short time treatment condition without any toxicity. Ara27, an amphipathic CPP, could be modified and utilized in the biomedical field excluding the risk of toxicity. Therefore, we would like to confirm the non-toxic induced penetrating ability of Ara27 in various cell lines. The purpose of this study was to screen the cell internalization ability of Ara27 in various cell lines and to confirm Ara27 as a promising core CPP structure. First, Ara27 was screened to confirm non-toxicity concentration. Then, fluorescence-labeled Ara27 was treated on human normal cell lines, cancer cell lines and animal cell lines to identify the cellular internalization of Ara27. Ara27 was well intracellular localized in all cell lines and the intensity of fluorescence was remarkably increased in time pass manner. These results indicate that Ara27 has the potential as a core structure for applications in various drug delivery systems.

Evaluation of Antioxidant Potential and UV Protective Properties of Four Bacterial Pigments

  • Rupali Koshti;Ashish Jagtap;Domnic Noronha;Shivali Patkar;Jennifer Nazareth;Ruby Paulose;Avik Chakraborty;Pampi Chakraborty
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.375-386
    • /
    • 2022
  • In the present study, four distinctly colored bacterial isolates that show intense pigmentation upon brief ultraviolet (UV) light exposure are chosen. The strains are identified as Micrococcus luteus (Milky yellow), Cryseobacterium pallidum (Yellow), Cryseobacterium spp. (Golden yellow), and Kocuria turfanensis (Pink) based on their morphological and 16S rDNA analysis. Moderate salinity (1.25%), 25-37℃ temperature, and pH of 7.2 are found to be the most favorable conditions of growth and pigment production for all the selected isolates. The pigments are extracted using methanol: chloroform (1:1) and the purity of the pigments are confirmed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Further, Fourier transform infrared (FTIR) and UV-Visible spectroscopy indicate their resemblance with carotenoids and flexirubin family. The antioxidant activities of the pigments are estimated, and, all the pigments have shown significant antioxidant efficacy in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The UV protective property of the pigments is determined by cling-film assay, wherein, at least 25% of UV sensitive Escherichia coli survive with bio-pigments even after 90 seconds of UV exposure compared to control. The pigments also hold a good sun protective factor (SPF) value (1.5-4.9) which is calculated with the Mansur equation. Based on these results, it can be predicted that these bacterial pigments can be further developed into a promising antioxidant and UV-protectant for several biomedical applications.

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems (다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구)

  • Minju Kim;Seulgi Lee;Joon Sig Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2023
  • Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

Development of Guideline for Heuristic Based Usability Evaluation on SaMD (SaMD에 대한 휴리스틱 기반 사용적합성 평가 가이드라인 개발)

  • Jong Yeop Kim;Junghyun Kim;Zero Kim;Myung Jin Chung
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.428-442
    • /
    • 2023
  • In this study, we have a goal to develop usability evaluation guidelines for heuristic-based artificial intelligence-based Software as a Medical Device (SaMD) in the medical field. We conducted a gap analysis between medical hardware (H/W) and non-medical software (S/W) based on ten heuristic principles. Through severity assessments, we identified 69 evaluation domains and 112 evaluation criteria aligned with the ten heuristic principles. Subsequently, we categorized each evaluation domain into five types, including user safety, data integrity, regulatory compliance, patient therapeutic effectiveness, and user convenience. We proposed usability evaluation guidelines that apply the newly derived heuristic-based Software as a Medical Device (SaMD) evaluation factors to the risk management process. In the discussion, we also have proposed the potential applications of the research findings and directions for future research. We have emphasized the importance of the judicious application of AI technology in the medical field and the evaluation of usability evaluation and offered valuable guidelines for various stakeholders, including medical device manufacturers, healthcare professionals, and regulatory authorities.

Implementation of Visible monkey into general-purpose Monte Carlo codes: MCNP, PHITS, and Geant4

  • Soo Min Lee;Chansoo Choi;Bangho Shin;Yumi Lee;Ji Won Choi;Bo-Wi Cheon;Chul Hee Min;Beom Sun Chung;Hyun Joon Choi ;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4019-4025
    • /
    • 2023
  • Recently, a new monkey computational phantom, called Visible Monkey, was developed for non-ionizing radiation studies in animal research. In this study, we extended its applications to ionizing radiation studies by implementing the voxel model of the Visible Monkey into three general-purpose Monte Carlo (MC) codes: MCNP6, PHITS, and Geant4. The implementation work for MCNP and PHITS was conducted using the LATTICE, UNIVERSE, and FILL cards. The G4VNestedParameterisation class was used for Geant4. Then, organ dose coefficients (DCs) for idealized photon beams in the antero-posterior direction were calculated using the three codes and compared, showing excellent agreement (differences <3%). Additionally, organ DCs in other directions (postero-anterior, left-lateral, and right-lateral) were calculated and compared with those of the newborn and 1-year-old reference phantoms. Significant differences were observed (e.g., the stomach DC of the monkey was 5-fold greater than that of the 1-year-old phantom at 0.03 MeV) while the differences tended to decrease with increasing energy (mostly <20% at 10 MeV). The results of this study allows conducting MC simulations using the Visible Monkey to estimate organ-level doses, which should be valuable to support/improve monkey experiments involving ionizing radiation exposures.

A Study of Genetic Polymonhisms of HLA-class I and II Genes Using Polymerase Chain Reaction (중합효소연쇄반응을 이용한 HLA-class I, II 유전자군의 유전적 다형성에 관한 연구)

  • Kyung-Ok Lee
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.11-25
    • /
    • 1998
  • The HLA genes located in the short arm of chromosome 6 specify heterodimeric glycoproteins involved in the regulation of the immune response. Recently, in the elucidation of HLA polymorphism, serological and cellular typing methods have been replaced by DNA typing using polymerase chain reaction (PCR). The purpose of this study was to establish the HLA DNA typing methods and determine gene frequencies of HLA molecules in Koreans. PCR-SSP (sequence specific primers) and PCR-RFLP (restriction fragment length polymorphism) techniques were used for the analysis of HLA-A, -B, -C, DRBl genes and HLA-DQAl, DQBl, DPBl genes, respectively. The results of B-lymphoblastoid cells used for control experiment were consistent with the previous data identified in the 11th International Histocompatibility Workshop. Seventeen, 23, 16, 8, 16, 13 and 37 types of HLA-A, B, C, DQAl, DQBl, DPBl and DRBl alleles were found, respectively, in a total of unrelated 120 Korean individuals. The most frequent HLA alleles were $A^*$02 (27.0%), B$^*$40 (17.6%), Cw$^*$01 (19.2%), DQAl$^*$0301 (32.1%), DQBl$^*$0303 (12.9%), DPBl$^*$0501 (31.3%) and DRBl$^*$1501 (9.2%) among Koreans. This study shows that DNA typing method using PCR technique is a relatively simple, fast and practical tool for the determination of the HLA-class I and II genes. Moreover, the data of HLA gene frequencies could be useful for the Korean database before clinical applications, including organ and unrelated bone marrow transplantation, anthropological study, disease association and individual identification.

  • PDF

Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides (소 가죽 유래 Type I Collagen 생산 공정에서 바이러스 불활화)

  • Bae, Jung Eun;Kim, Chan Kyung;Kim, Sungpo;Yang, Eun Kyung;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • Most types of collagen used for biomedical applications, such as cell therapy and tissue engineering, are derived from animal tissues. Therefore, special precautions must be taken during the production of these proteins in order to assure against the possibility of the products transmitting infectious diseases to the recipients. The ability to remove and/or inactivate known and potential viral contaminants during the manufacturing process is an ever-increasingly important parameter in assessing the safety of biomedical products. The purpose of this study was to evaluate the efficacies of the 70% ethanol treatment and pepsin treatment at pH 2.0 for the inactivation of bovine viruses during the manufacture of collagen type I from bovine hides. A variety of experimental model viruses for bovine viruses including bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), bovine parainfluenza 3 virus (BPIV-3), and bovine parvovirus (BPV), were chosen for the evaluation of viral inactivation efficacy. BHV, BVDV, BPIV-3, and BPV were effectively inactivated to undetectable levels within 1 h of 70% ethanol treatment for 24 h, with log reduction factors of ${\geq}5.58$, ${\geq}5.32$, ${\geq}5.11$, and ${\geq}3.42$, respectively. BHV, BVDV, BPIV-3, and BPV were also effectively inactivated to undetectable levels within 5 days of pepsin treatment for 14 days, with the log reduction factors of ${\geq}7.08$, ${\geq}6.60$, ${\geq}5.60$, and ${\geq}3.59$, respectively. The cumulative virus reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}12.66$, ${\geq}11.92$, ${\geq}10.71$, and ${\geq}7.01$. These results indicate that the production process for collagen type I from bovine hides has a sufficient virus-reducing capacity to achieve a high margin of virus safety.