• Title/Summary/Keyword: Biomechanical Model

Search Result 232, Processing Time 0.028 seconds

A Real-Time Graphic Driving Simulator of the Construction Vehicle (건설 차량 실시간 그래픽 주행 시뮬레이터)

  • Son, Kwon;Choi, Kyung-Hyun;You, Chang-Houn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.109-118
    • /
    • 1999
  • A graphic software is one of the most important components of the vehicle simulator. To increase a visual reality of the simulator, the graphic software should require several technologies such as three-dimensional graphics, graphic modeling of the vehicle and the environment, drivers biomechanical models, and real-time data processing. This study presents a real time graphic driving simulator of a construction vehicle. The graphic simulator contains the three models of the construction vehicle, the human, and the environment, and employes a neural network approach to decrease an on-line dynamic computation. An excavator model is represented using an object-oriented paradigm and contains the detailed information about a real-size vehicle. The human model is introduced for objective visual evaluations of the developed excavator model. Since the environment model plays an important role in a real-time simulator, a block-based approach is implemented and a text format is utilized for easier construction of environment. The simulation results are illustrated in order to demonstrate the applicability of developed models and the neural network approach.

  • PDF

A Computer-Aided Design Program of Man-in-Cab for Heavy Construction Vehicle (인체모델을 이용한 중장비 운전실 설계용 CAD 프로그램)

  • Son, Kwon;Lee, Hee-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3525-3537
    • /
    • 1996
  • This paper presents a CAD program develpoed on a microcomputer in order to support graphic and computational assessment of ergonomic problems associated with the design of a man-in-cab system. The program is coded to help workspace designers with ergonomic evaluations needed in the design stage. This paper proposed a biomechanical -ergonomic evaluations needed using man and workplace models. The human model is developed to have dimensions obtained from the Korean anthropometric data reported in 1992. Its graphical representation is based on a wire-frame model but, whenever necessary, body segments can be represented by a solid model with hidden line/faces removed and shaded. Workplace models are presented for cabs of the excavator, one of the most popular construction vehicles. A workplace model consists of an operator seat, a steering wheel. two control levers, two pedals, and a control panel. The workplace elements can be modified in their sizes, positions, and orientations by changing the reference point and design parameters. An algorithm for the view test is suggested and loaded to provide a visual evaluaiton of the overall layout of a workplace model.

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Design Optimization of UMPC Keypad Using Human Finger (인체 손가락 해석을 통한 UMPC 키패드 설계 최적화)

  • Park, Soo-Hyun;Kim, Kwang-Il;Yang, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.544-547
    • /
    • 2008
  • As the mobile electronic product is getting slimmer and smaller, the necessity of keypad is being increased. But the possibility of mis-typing keypad is increased rapidly due to the integrated keypad in the small mobile product. The business division has not considered the methodology of keypad design essentially. In this paper, analysis method and design evaluation standard to reduce the mis-typing of UMPC(Ultra Mobile Personal Computer) is suggested. First, the finite element analysis model and the biomechanical human body model are implemented in order to simulate the exact contact characteristic between finger and keypad. The reliability of analysis model is guaranteed by the comparison of the contact pressure between analysis result and experiment result of the pressure sensor. The design optimization of key shape and layout is derived through the response surface method. The prototype model is produced with the optimized design of keypad, and then it verified the advanced function with user mis-typing detection test. The optimized keypad design reduced the mis-typing ratio from 35% of existing model to 75 of proposed model. If this paper is widely applied to not only UMPC but also the other electronic products, the emotional quality of all products could be improved considerably.

  • PDF

Electrical Transmission Line Modelling of the Cochlear Basilar Membrane (다팽이관 기저막의 전기 전달선 모델링)

  • Jarng, Soon-Suck
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.125-136
    • /
    • 1993
  • The study of Cochlear biomechanics is to clearly define three biomechanical principles of the Cochlea : Activity, Nonlinearity and Feedback. In this article, the Cochlea is linearly and actively modelled in one dimensional time domain. The sharp tunning of the Basilar Membrane displacement is shown when the amplifying activity of hair cells is added to the model. The amplified energy of the travelling displacement wave is emitted throughout the Cochlear fluid, so that the model becomes unstable. A new technique is introduced to reduce strong echos fro the Helicotrema. It makes the model less unstable. Both pure and click tones are used as input stimuli onto the ear durm. When the model is normal, the click response of the model shows that the backward emission of the amplified fluid pressure has mainly the echos from the Helicotrema. However, when the linear and active model is assumed to be abnormal, that is, some of hair cells are damaged not to produce the active process, the effect of the hair cell damage is resulted in the Oto-acoustic emission. The frequency response of the abnormally emitted sound pressure shows that the Oto-acoustic emission has the information about the characteristic frequency of the damaged hair cell. The main aim of this paper is to demonstrate the active biomechanics of the Chchlea in the time domain.

  • PDF

Filing Experiments and Structural Analysis of Human Body (사격시험 및 인체구조해석)

  • Lee, Se-Hoon;Choi, Young-Jin;Choi, Eui-Jung;Chae, Je-Wook;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.764-776
    • /
    • 2007
  • On the human-rifle system, the human body is affected by the firing impact. The firing impact will reduce the firing accuracy and change the initial shooting posture. Therefore the study of biomechanical characteristics using human-rifle modeling and numerical investigation is needed. The musculoskeletal model is developed by finite element method using beam and spar elements. In this study structural analysis has been performed in order to investigate the human body impact by firing of 5.56mm small caliber machine gun. The firing experiments with the standing shooting postures were performed to verify analytical results. The result if this study shows analytical displacements of the human-rifle system and experimental displacements of the real firing. As the results, the analytical displacement and stress of human body are presented.

The Change of Biomechanical Milieu after Removal of mstnnnentation in lrunbar Arthrodesis Stiffness of fusion Mass: Finite Element Analysis (척추 유합술 후, 인접 분절의 스트레스에 대한 척추경 나사못에 대한 영향)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.664-667
    • /
    • 2008
  • Since the advent of pedicle screw fixation system, posterior spinal fusion has markedly increased This intemal fixation system has been reported to enhance the fusion rates, thereby becoming very popular procedure in posterior spinal arthrodesis. Although some previous studies have shown the complications of spinal instruments removal, i.e. loss of correction and spinal collapse in scoliosis or long spine fusion patients, there has been no study describing the benefit or complications in lumbar spinal fusion surgery of one or two level. In order to clarify the effect of removal of instruments on mechanical motion profile, we simulated a finite element model of instrumented posterolateral fused lumbar spine model, and investigated the change of mechanical motion profiles after the removal of instrumentation.

  • PDF

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

Parametric morphing of subject-specific NURBS models for Human Proximal Femurs Subject to Femoral Functions (해부학적 기능을 고려한 환자맞춤형 근위대퇴골 모델의 파라메트릭 변형 방안)

  • Park, Byoung-Keon;Wook, Chae-Jae;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.458-466
    • /
    • 2011
  • The morphology of a bone is closely associated with its biomechanical response. Thus, much research has been focused on analyzing the effects of variation of bone morphology with subject-specific models. Subject-specific models, which are generally achieved from 3D imaging devices like CT and MRI, incorporate more of the detailed information that makes a model unique. Hence, it may predict individual responses more accurately. Despite these powerful characteristics, specific models are not easily parameterized to the extent possible with statistical models because of their morphologic complexities. Thus, it is still proven challenging to analyze morphologic variations of subject-specific models across changes due to aging or disease. The aim of this article is to propose a generic and robust parametric morphing method for a subject-specific bone structure. We demonstrate this by using the proposed method on a model of a human proximal femur. Automatic segmentation algorithms are also presented to parameterize the specific model efficiently. A total of 48 femur models were evaluated for defining morphing vector fields. Also, several anatomical and mechanical functions of femur were considered as morphing constraints, and the NURBS interpolating technique was applied in the method to guarantee the generality of our morphed results.