• Title/Summary/Keyword: Biomechanical Method

Search Result 236, Processing Time 0.029 seconds

Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking (내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석)

  • Chae, Woen-Sik;Lee, Haeng-Seob;Jung, Jae-Hu;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

Biomechanical Effects of Facet Capsule Injuries in Posterior Lumbar Fusion Operations (후방경유 요추 융합수술시 척추후관절낭 손상의 운동역학적 영향)

  • Park, Seung Won;Kim, Young Baeg;Hwang, Sung Nam;Choi, Duck Young;Kwon, Jeong Taik;Min, Byung Kook;Suk, Jong Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.358-365
    • /
    • 2001
  • Objectives : Although posterior lumbar fusion operations had been reported to accelerate spinal degeneration, there have been only a few studies for their biomechanical effects. We have studied the change of motion range at the vertebral joint one level above the fusion(UVJ) in pedicle screw fixation group(PSF)(n=13) where facet capsule was destroyed and in posterior lumbar interbody fusion group(PLIF)(n=8) where it was spared. Patients and Methods : The patients were divided into early(3 to 6 months) and late(over 12 months) according to postoperative follow-up period. The flexion, extension and flexion-extension angles(FA, EA, FEA) were measured at the UVJ with pre-operative, early and late post-operative films. Results : Mean age and male to female ratio were $52.7{\pm}9.3$ and 1 : 3.2. Mean follow-up periods were $144.1{\pm}30.0$ and $528.8{\pm}160.3$ days in early and late groups, respectively. The FEA and FA in the late PSF($11.8{\pm}3.1$, $8.5{\pm}2.9$) were significantly greater than pre-operative angles($7.8{\pm}3.9$, $5.1{\pm}3.7$)(p<0.01, p<0.05). All angles in the PLIF showed no significant changes with time. The FEA and FA in the late PSF($11.8{\pm}3.1$, $8.5{\pm}2.9$) were significantly greater than those of the late PLIF($7.6{\pm}2.3$, $3.4{\pm}2.0$)(p<0.01, p<0.001). All angles at early follow-up period were similar between PSF and PLIF. The EA showed no significant change in relation with follow-up period or fusion method. Conclusion : As a result, the facet capsule injury in pedicle screw fixation seems to be related with increased flexion angle or degeneration of the adjacent joint above the fused vertebra in the late phase.

  • PDF

Biomechanical Analysis of Different Thoracolumbar Orthosis Designs using Finite Element Method (유한요소 해석을 이용한 정형용 흉·요추 보조기의 형태에 따른 생체역학적 분석)

  • Kim, Y.H.;Jun, S.C.;Jung, D.Y.;Lee, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Thoracolumbar orthosis has been used for the rehabilitation of the patients with senile kyphosis. Recently, a number of different thoracolumbar orthosis designs have been introduced but its biomechanical effectiveness still remain unknown. In this study, we compared the pressure distribution on the surface of the trunk and stresses on the orthosis in relation to changes in connecting frame designs (Type 1, one-connecting frame type; Type 2, two-connecting frame type; Type 3, all-in-one type) using finite element (FE) models under different motions of the trunk. The results showed that Type 3 distributed the pressure on the trunk most evenly followed by Type 2 and Type 1 and the difference between Type 1 and Type 2 was negligible. ROM was limited most effectively by Type 3 ($8.5{\sim}9.4^{\circ}$), followed by Type 2 ($11.3{\sim}13.9^{\circ}$) and Type 1 ($12.1{\sim}15.4^{\circ}$). The ratio between the peak von Mises stress and yield strength of each material remained less than 20% regardless of orthosis type indicating low likelihood of component failure. In conclusion, our study found that all-in-one type of orthosis was the most effective design for the conservative treatment of spinal deformity in terms of function and comfort.

  • PDF

A Correlational Study of Biomechanical Variables and Aesthetic Artistry in Grand Pas de Chat

  • Jung, Jung-Eun;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Objective: The objective of this study is to present a scientific basis for ballet dancer training methods by analyzing the relationships between subjective assessment of the ballet movement 'Grand pas de chat' and kinematic and electromyographic factors. Method: The subjects were 14 professional dancers with 15 years of experience on average. Four cameras and a wireless electromyogram were used to examine kinematic factors, and the filmed videos were analyzed by 3 experts for subjective assessment. Results: Although no differences in kinematic factors were found between the excellent dancer group and the non-excellent dancer group divided based on the experts' assessment, some difference was found in electromyographic factors, especially in relation to the gastrocnemius muscle, rectus femoris muscle, and erector spinae muscle. A relationship between subjective assessment and kinematic and electromyographic factors was found, and factors such as right-side rectus femoris activation, time required, left-side gastrocnemius activation, and front-back displacement affected subjective assessment. Conclusion: This study showed a relationship between subjective assessment and kinematic and electromyographic factors. To receive higher scores in subjective assessment, it is necessary to extend the hang time by using the lower limb muscles. The findings of this study also indicate the necessity of weight training in order to improve dancing techniques.

Measurements of pedestrian's ioad using smartphones

  • Pan, Ziye;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.771-777
    • /
    • 2017
  • The applications of smartphones or other portable smart devices have dramatically changed people's lifestyle. Researchers have been investigating useage of smartphones for structural health monitoring, earthquake monitoring, vibration measurement and human posture recognition. Their results indicate a great potential of smartphones for measuring pedestrian-induced loads like walking, jumping and bouncing. Smartphone can catch the device's motion trail, which provides with a new method for pedestrain load measurement. Therefore, this study carried out a series of experiments to verify the application of the smartphone for measuring human-induced load. Shaking table tests were first conducted in order to compare the smartphones' measurements with the real input signals in both time and frequency domains. It is found that selected smartphones have a satisfied accuracy when measuring harmonic signals of low frequencies. Then, motion capture technology in conjunction with force plates were adopted in the second-stage experiment. The smartphone is used to record the acceleration of center-of-mass of a person. The human-induced loads are then reconstructed by a biomechanical model. Experimental results demonstrate that the loads measured by smartphone are good for bouncing and jumping, and reasonable for walking.

Passivity Based Adaptive Control and Its Optimization for Upper Limb Assist Exoskeleton Robot (상지 근력 보조용 착용형 외골격 로봇의 수동성 기반 적응 제어와 최적화 기법)

  • Khan, Abdul Manan;Ji, Young Hoon;Ali, Mian Ashfaq;Han, Jung Soo;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.857-863
    • /
    • 2015
  • The need for human body posture robots has led researchers to develop dexterous design of exoskeleton robots. Quantitative techniques to assess human motor function and generate commands for robots were required to be developed. In this paper, we present a passivity based adaptive control algorithm for upper limb assist exoskeleton. The proposed algorithm can adapt to different subject parameters and provide efficient response against the biomechanical variations caused by subject variations. Furthermore, we have employed the Particle Swarm Optimization technique to tune the controller gains. Efficacy of the proposed algorithm method is experimentally demonstrated using a seven degree of freedom upper limb assist exoskeleton robot. The proposed algorithm was found to estimate the desired motion and assist accordingly. This algorithm in conjunction with an upper limb assist exoskeleton robot may be very useful for elderly people to perform daily tasks.

Key-hole Technique in Treatment of A-C Dislocation - Preliminary Report - (Key-hole 술식을 이용한 급성 견봉쇄골관절 탈구의 치료-예비보고-)

  • Choi Chang-Hyuk;Kwun Koing-Woo;Kim Shin-Kun;Lee Sang-Wook;Yun Young-Jun
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • The results of the operative treatment of the Grade III acromioclavicular joint injury is defined by the durability of the reduced joint and free of exertional pain. Several surgical techniques have been applied to reduce and stabilize the joints effectively. Resection of clavicular lateral end and subacromial decompression also could be applied to prevent post-operative arthritic change. Biomechanical studies reveals the role of clavicular elevation and rotation to achieve more than 90 degrees of elevation. It also serves as a attachment site of deltoid and trapezius muscle. The stability and mobility of the both acromioclavicular and coracoclavicular joint are important to get full functional recovery. We modified the methods of coracoacromial ligament transfer described by Weaver-Dunn and by Shoji et a!. to pre­vent pullout of the transferred ligament and to get more improved functional results. Main technical point was harvesting full thickness bone block and fix it through the key-hole to reduce pull out angle.

  • PDF

ACL Reconstruction: Bone-Patellar Tendon-Bone Autograft (전방 십자 인대 재건술: 골-슬개건-골 자가이식물)

  • Koh, Hae-Seok
    • Journal of the Korean Arthroscopy Society
    • /
    • v.9 no.2
    • /
    • pp.102-108
    • /
    • 2005
  • The incidence of anterior cruciate ligament tears is increasing as a result of the increasing participation of individuals of all ages in high-risk sports. Endoscopic anterior cruciate ligament reconstruction using autogenous central third bone-patellar tendon-bone graft is the most commonly used method. With regard to BPTB graft as the go]d standard in ACL reconstruction, there are no data that refute this claim to date. Author reviewed the biomechanical properties, donor site morbidity and selection of the bone-patellar tendon-bone graft and described the surgical technique of endoscopic ACL reconstruction using BPTB autograft.

  • PDF

The Distal Filling Effects on Hip Jont Function in Cementless Total Hip Replacement (인공 고관절 대치술에서 무시멘트형 스템의 원위부 압박이 고관철 성능에 미치는 영향)

  • 채수원;박상석;박재원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2777-2785
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The intial stability has close relationship with the relative displacement of prosthessis and sponge bone at the proximal of femur. After implantation of the proshesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems. Three types of stems empolyed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

Human Postural Response to Linear Perturbation (선형외란에 대응하는 인체의 자세응답 해석)

  • Kim, Se-Young;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.