• Title/Summary/Keyword: Biomass-derived

Search Result 253, Processing Time 0.024 seconds

Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels

  • Choi, Yong-Ki;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.127-131
    • /
    • 2015
  • In this work, highly porous carbons were prepared by chemical activation of carbonized biomass-derived aerogels. These aerogels were synthesized from watermelon flesh using a hydrothermal reaction. After carbonization, chemical activation was conducted using potassium hydroxide to enhance the specific surface area and microporosity. The micro-structural properties and morphologies were measured by X-ray diffraction and scanning electron microscopy, respectively. The specific surface area and microporosity were investigated by $N_2$/77 K adsorption-desorption isotherms using the Brunauer-Emmett-Teller method and Barrett-Joyner-Halenda equation, respectively. Hydrogen storage capacity was dependent on the activation temperature. The highest capacity of 2.7 wt% at 77 K and 1 bar was obtained with an activation temperature of $900^{\circ}C$.

Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor

  • Gopalakrishnan, Arthi;Badhulika, Sushmee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.257-266
    • /
    • 2018
  • Here, a controlled green synthesis route involving hydrothermal pre-carbonization cum pyrolysis is reported that converts cucumber into graphene-like carbon nanosheets for supercapacitor application. Transmission electron microscopy analysis reveals the formation of ultra-thin carbon nanosheets with distributed pores. This cucumber derived carbon exhibits high specific capacitance of $143F\;g^{-1}$ in aqueous electrolyte. The two-electrode symmetric cell exhibits a specific capacitance of $58F\;g^{-1}$ at high current density, and high capacitance retention of 97% after 1000 cycles. This simple low-cost process involving widely available cucumber as biomass precursor is a promising, commercially viable approach for developing high-performance supercapacitors.

Tropospheric Ozone Retrieval Algorithm Based on the TOMS Scanning Geometry

  • Kim, Jae-Hwan;Na, Sun-Mi;Newchurch, M.J.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • This paper applies the Scan-Angle Method (SAM) to the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe (EP) satellite for determining tropospheric ozone based on TOMS scan geometry. In the northern tropical Africa burning season, the distribution of the SAM-derived tropospheric ozone presents a tropospheric ozone enhancement related to biomass burning. This distribution is consistent with that of fire counts observed from Along Track Scanning Radiometer (ATSR) and that of carbon monoxide, the tropospheric ozone precursor, observed from Measurements of Pollution In The Troposphere (MOPITI). However, this feature is not shown in the distribution of tropospheric ozone derived from other TOMS-based algorithms for the northern burning season. In the high latitudes, the influence of pollution in the SAM results is seen over the northern continents in agreement with carbon monoxide for northern summer when the dynamical activity is weak in the northern hemisphere.

The effects of heavy metals on microbial biomass and activity in contaminated urban park soils (도시 공원의 토양에서 중금속이 미생물의 생체량과 활성에 미치는 영향)

  • Kim, Ok-Kyung;Paul Birch
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 1992
  • The relationship between pb, zn, cd, and the microbial biomass and activity were investigated in three public park soils of central and outer london. Variability with distance from the roadside and profile were studied. The heavey metal concentrations were the highest in hampstead heath and hyde park with high trafic density and the lowest in hainault. The highest concentrations of heavy metals were found adjacent to the roadside in the upper parts of the soil profile. Dehydrogenase activity, adenosine tri-phosphate and ergosterol contents used as indices of micrbial biomass and activity, were generally higher in hainadult, and also higher in the upper pats of the soil profile. Simple regression analysis indicated that the microbial biomass and activity were affected significantly by moisture content, water holding capacity, total organic carbon, total nitrogen, and organic mater rather than heavy metal concentration. Highest inputs of nitrogen and carbon were associated with high inputs of heavey metals, all three being derived from vehicle emissions adjacent to the road. The hyde park and hampstead heath microbial populations were able to respond to the c and n input positively by increase in biomass and activity, whereas the hainault populations could not. This rsult suggrsts adaptation in he former to heavy matals, but not in the latter.

  • PDF

Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox (산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근)

  • Seung-Rok Lee;Gyu-Seong Han
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.

Regeneration of nitrate and phosphate from toilet wastewater using waste alumina adsorbent for cultivation of Spirulina platensis

  • Lee, Sang-Jun;Park, Seonghwan;Noh, Won;Yeom, Dong-Hyuk;Kim, Sooyeon;Kim, Dae-wook;Kim, Jungmin
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • The use of different types of wastewater (WW) for the cultivation of microalgae and cyanobacteria during recent decades has provided important economic and environmental benefits. However, direct use of WW can lead to growth inhibition and biomass contamination. In the present study, we separated the key WW nutrients, namely nitrate and phosphate, by adsorption and regeneration and used the resulting regenerated water to cultivate the cyanobacterium Spirulina platensis. The adsorbent was granular γ-alumina derived from waste aluminum cans. This procedure recovered 19.9% of nitrate and 23.7% of phosphate from WW. The cyanobacterial cultures efficiently assimilated the nutrients from the medium prepared using regenerated WW, and the growth and nutrient uptake were similar to those in a synthetic medium. In addition, imposing nutrient limitations to increase carbohydrate productivity was easily achieved using regenerated wastewater nutrients, without requiring additional dilution or complex processing. In acute toxicity tests, the harvested biomass in a regenerated medium had similar toxicity levels compared to the biomass obtained from a synthetic medium. The proposed method of using regenerated WW to produce contamination-free biomass has broad potential applications.

Research Trend of Biomass-Derived Engineering Plastics (바이오매스 기반 엔지니어링 플라스틱 연구 동향)

  • Jeon, Hyeonyeol;Koo, Jun Mo;Park, Seul-A;Kim, Seon-Mi;Jegal, Jonggeon;Cha, Hyun Gil;Oh, Dongyeop X.;Hwang, Sung Yeon;Park, Jeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.

Effects of Ionic Strength, Background Electrolytes, Heavy Metals, and Redox-Active Species on the Reduction of Hexavalent Chromium by Ecklonia Biomass

  • PARK DONGHEE;YUN YEOUNG-SANG;JO JI HYE;PARK JONG MOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.780-786
    • /
    • 2005
  • The biomass of the brown seaweed, Ecklonia, was used to remove Cr(VI) from wastewater. Previously, Cr(VI) was removed through its reduction to Cr(III) when brought into contact with the biomass. In this study, the effects of ionic strength, background electrolytes, and Cr(III), Ni(II), Zn(II), and Fe(III) on the Cr(VI) reduction were examined. An increased ionic strength inhibited the Cr(VI) reduction. The presence of other heavy metals, such as Cr(III), Ni(II), or Zn(II), only slightly affected the Cr(VI) reduction, while Fe(III) enhanced the reduction. Although the above various parameters could affect the reduction rate of Cr(VI) by Ecklonia biomass, these effects were relatively smaller than those of pH and temperature. In addition, the previously derived rate equation was found to be applicable over a range of ionic strengths and with different background electrolytes. In conclusion, Ecklonia, bioniass may be a good candidate as a biosorbent for the removal of Cr(VI) from wastewaters containing various other impurities, and scale-up to a practical process may be accomplished using the previously derived rate equation.

Production of Lignin Peroxidase by Phellinus igniarius and Cytotoxic Effects of Lignin Hydrolysates Derived from Wood Biomass on Cancer Cells

  • Lee, Jae-Sung;Lee, Jong-Suk;Yoon, Jae-Don;Beak, Sung-Mok;Bosire, Kefa-O.;Lee, Yong-Soo;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.189-193
    • /
    • 2004
  • Over the past several years, research efforts have been directed both at economically producing valuable substances from the wood biomass and at producing lignolytic enzymes at a lower cost. In the present study, we found that Phellinus igniarius, the basidiomycetes, secreted lignin peroxidase as a main lignolytic enzyme, which was detected maximum activity at 16th day of culture and showed 37 kDa of molecular mass in identification by activity assay and purification by anion-exchange chromatography. The Phellinus igniarius-derived lignin peroxidase hydrolyzed steam-exploded wood (Quercus mongolica) powder into small molecules showing cytotoxicity against cancer cel1s (HepG2 hepatoma, SK-N-SH neuroblastoma, B16 melanoma, MBT-2 bladder cancer). In addition, the enzyme hydrlysates of lignins (ELg) that were extracted from the steam-exploded oak showed more potent cytotoxic effects on the cancer cells than the enzyme hydrolysates of wood biomass (EWp), indicating that the cytotoxic effect of EWp may be due to the enzyme-degraded products of lignin among the lignocellulosics. Furthermore, the cytotoxic effect of ELg on Chang, normal liver cells, was much less potent than that of ELg on HepG2 and B16 cancer cells, indicating that the cytotoxic effect of ELg may be specific for cancer cells. The present results suggest that Phellinus igniarius may be a useful resource for the large-scale production of lignin peroxidase and that the lignin peroxidase may be applied for the generation of valuable biodegradation products from wood lignocellulosics for medical use.