References
- Abdullah MA, Ahmad A, Shah SMU, et al. Integrated algal engineering for bioenergy generation, effluent remediation, and production of high-value bioactive compounds. Biotechnol. Bioproc. Eng. 2016;21:236-249. https://doi.org/10.1007/s12257-015-0388-2
- Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 2010;101:58-64. https://doi.org/10.1016/j.biortech.2009.02.076
- Lau PS, Tam NFY, Wong YS. Wastewater nutrients removal by Chlorella vulgaris: Optimization through acclimation. Environ. Technol. 1996;17:183-189. https://doi.org/10.1080/09593331708616375
- Chen Y, Sun LP, Liu ZH, Martin G, Sun Z. Integration of waste valorization for sustainable production of chemicals and materials via algal cultivation. Top. Curr. Chem. 2017;375:1-38. https://doi.org/10.1007/s41061-016-0088-1
- Xu J, Lo SL, Gong R, Xu Sun X. Control of agricultural non-point source pollution in Fuxian lake with riparian wetlands. Desalin. Water Treat. 2016;57:28570-28580. https://doi.org/10.1080/19443994.2016.1188731
- Xiong JQ, Kurade MB, Jeon BH. Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol. 2018;36:30-44. https://doi.org/10.1016/j.tibtech.2017.09.003
- Ryu BG, Kim EJ, Kim HS, Kim J, Choi YE, Yang JW. Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater Bacteria. Biotechnol. Bioproc. Eng. 2014;19:201-210. https://doi.org/10.1007/s12257-013-0250-3
- Ryu BG, Kim J, Yoo G, et al. Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel. Bioresour. Technol. 2014;158:166-173. https://doi.org/10.1016/j.biortech.2014.01.128
- Markou G, Depraetere O, Vandamme D, Muylaert K. Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption. Int. J. Mol. Sci. 2015;16:4250-4264. https://doi.org/10.3390/ijms16024250
- Markou G, Vandamme D, Muylaert K. Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresour. Technol. 2014;155:373-378. https://doi.org/10.1016/j.biortech.2013.12.122
- Islam A, Taufiq-Yap YH, Chu CM, Chan ES, Ravindra P. Synthesis and characterization of millimetric gamma alumina spherical particles by oil drop granulation method. J. Porous Mater. 2012;19:807-817. https://doi.org/10.1007/s10934-011-9535-0
- Kim J, Hwang MJ, Lee SJ, et al. Efficient recovery of nitrate and phosphate from wastewater by an amine-grafted adsorbent for cyanobacterial biomass production. Bioresour. Technol. 2016;205:269-273. https://doi.org/10.1016/j.biortech.2016.01.055
- Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sust. Energ. Rev. 2013;19:360-369. https://doi.org/10.1016/j.rser.2012.11.030
- Organisation for economic co-operation and development (OECD). Guideline for testing of chemicals, Daphnia sp. acute immobilisation test (Guideline No. 202), Paris, France: OECD; 2004. p. 1-12.
- Kebede E, Ahlgren G. Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from lake Chitu, Ethiopia. Hydrobiologia 1996;332:99-109. https://doi.org/10.1007/BF00016689
- DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350-356. https://doi.org/10.1021/ac60111a017
- Lourenco SO, Barbarino E, Lavín PL, Marquez UML, Aidar E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004;39:17-32. https://doi.org/10.1080/0967026032000157156
- Izard J, Limberger RJ. Rapid screening method for quantitation of bacterial cell lipids from whole cells. J. Microbiol. Meth. 2003;55:411-418. https://doi.org/10.1016/S0167-7012(03)00193-3
- Banerjee S, Dubey S, Gautam RK, Chattopadhyaya MC, Sharma YC. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab. J. Chem. 2017.
- Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015;77:98-106. https://doi.org/10.1016/j.watres.2015.03.018
- Hong SJ, Park YS, Han MA, et al. Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioproc. Eng. 2017;22:60-67. https://doi.org/10.1007/s12257-016-0575-9
- Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Amin NF, Khalafallah MA, Ali MA, Abou-Sdera SA, Matter IA. Effect of some nitrogen sources on growth and lipid of microalgae Chlorella sp. for biodiesel production. J. Appl. Sci. Res. 2013;9:4845-4855.
- Ferreira AL, Loureiro S, Soares AM. Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat. Toxicol. 2008;89:28-39. https://doi.org/10.1016/j.aquatox.2008.05.012
- Nebeker AV, Dominguez SE, Chapman GA, Onjukka ST, Stevens DG. Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus. Environ. Toxicol. Chem. 1992;11:373-379. https://doi.org/10.1002/etc.5620110311
- Borgeraas J, Hessen DO. UV-B induced mortality and antioxidant enzyme activities in Daphnia magna at different oxygen concentrations and temperatures. J. Plankton Res. 2000;22:1167-1183. https://doi.org/10.1093/plankt/22.6.1167
- Kobayashi M, Hoshi T. Analysis of respiratory role of hemoglobin in Daphnia magna. Zool. Sci. 1984;1:523-532.