• Title/Summary/Keyword: Biomass carbon stock

Search Result 52, Processing Time 0.021 seconds

Estimation of Carbon Storages and Fluxes by Ecosystem Type in Korea (국내 생태계 유형별 탄소 저장 및 거동 산정 연구 현황 분석)

  • Inyoung Jang;Heon Mo Jeong;Sang-Hak Han;Na-Hyun Ahn;Dukyeop Kim;Sung-Ryong Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • As climate change gets severe, the ecosystem acts as an important carbon sink, therefore efforts are being made to utilize these functions to mitigate climate change. In this study, we inventoried and analyzed the previous studies related to carbon storage and flux by ecosystem type (forest, cropland, wetland, grassland, and settlement) and carbon pool (aboveground and belowground biomass, dead wood, Litter, soil organic carbon, and ecosystem) in Korean ecosystems. We also collected the results of previous studies and calculated the average value of carbon storage and flux for each ecosystem type and carbon pool. As a result, we found that most (66%) of Korea's carbon storage and fluxes studies were conducted in forests. Based on the results of forest studies, we estimated the storage by carbon stock. We found that much carbon is stored in vegetation (aboveground: 4,018.32 gC m-2 and belowground biomass: 4,095.63 gC m-2) and soil (4,159.43 gC m-2). In particular, a large amount of carbon is stored in the forest understory. For other ecosystem types, it was impossible to determine each carbon pool's storage and flux due to data limitations. However, in the case of soil organic carbon storage, the data for forests and grasslands were comparable, showing that both ecosystems store relatively similar amounts of carbon (4,159.43 gC m-2, 4,023.23 gC m-2, respectively). This study confirms the need to study carbon in rather diverse ecosystem types.

Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: the case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia

  • Tesfaye, Mehari A.;Gardi, Oliver;Bekele, Tesfaye;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.161-182
    • /
    • 2019
  • Quantifying the amount of carbon pools in forest ecosystems enables to understand about various carbon pools in the forest ecosystem. Therefore, this study was conducted in the Chilimo dry afromontane forest to estimate the amount of carbon stored. The natural forest was stratified into three forest patches based on species composition, diversity, and structure. A total of 50 permanent sample plots of 20 m × 20 m (400 ㎡ ) each were established, laid out on transects of altitudinal gradients with a distance of 100 m between plots. The plots were measured twice in 2012 and 2017. Tree, deadwood, mineral soil, forest floor, and stump data were collected in the main plots, while shrubs, saplings, herbaceous plants, and seedling data were sampled inside subplots. Soil organic carbon (SOC %) was analyzed following Walkely, while Black's procedure and bulk density were estimated following the procedure of Blake (Methods of soil analysis, 1965). Aboveground biomass was calculated using the equation of Chave et al. (Glob Chang Biol_20:3177-3190, 2014). Data analysis was made using RStudio software. To analyze equality of means, we used ANOVA for multiple comparisons among elevation classes at α = 0.05. The aboveground carbon of the natural forest ranged from 148.30 ± 115.02 for high altitude to 100.14 ± 39.93 for middle altitude, was highest at 151.35 ± 108.98 t C ha-1 for gentle slope, and was lowest at 88.01 ± 49.72 t C ha-1 for middle slope. The mean stump carbon density 2.33 ± 1.64 t C ha-1 was the highest for the middle slope, and 1.68 ± 1.21 t C ha-1 was the lowest for the steep slope range. The highest 1.44 ± 2.21 t C ha-1 deadwood carbon density was found under the middle slope range, and the lowest 0.21 ± 0.20 t C ha-1 was found under the lowest slope range. The SOCD up to 1 m depth was highest at 295.96 ± 80.45 t C ha-1 under the middle altitudinal gradient; however, it was lowest at 206.40 ± 65.59 t C ha-1 under the lower altitudinal gradient. The mean ecosystem carbon stock density of the sampled plots in natural forests ranged from 221.89 to 819.44 t C ha-1. There was a temporal variation in carbon pools along environmental and social factors. The highest carbon pool was contributed by SOC. We recommend forest carbon-related awareness creation for local people, and promotion of the local knowledge can be regarded as a possible option for sustainable forest management.

Evaluating Monitoring Condition for Forest Carbon Offset Project to Demonstrate CSR in North Korea (대북 사회공헌형 산림탄소상쇄사업 모니터링 여건평가)

  • Joo, Seung-Min;Heo, ManHo;Kim, Jong-Dall;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.11-20
    • /
    • 2015
  • Abstract Monitoring is the most critical element in implementing "forest carbon offset project" to enhance the visibility of CSR (Corporate Social Responsibility) in North Korea. This study is intended to explore monitoring potential in terms of forest carbon offset project using satellite image for Baekdu mountain of North Korea. The permanent record of standard satellite remote sensing system demonstrated its capability of presenting area-wide visual evidences of monitoring conditions in Mt. Baekdu mountain of North Korea (site suitability, carbon stock by forest biomass growth, carbon emission by forest biomass loss, deforestation and degradation, environmental, social and economic impact specified in the Carbon Sequestration Law). It doesn't seem very difficult to comply with monitoring requirements for "the forest carbon offset project" due to the probative value of satellite data. Therefore, it could be considerable or realistic approach to utilize CSR based forest carbon offset project as a point of reform and open-door in North Korea. It is anticipated that this research output could be used as a valuable reference for Korea-based enterprises to ensure monitoring potentials using satellite image in exploring forest carbon offset project sites in North Korea.

Forest Resources of the Korea Based on National Forest Inventory Data

  • Kim, Dong-Hyuk;Nor, Dae-Kyun;Jeong, Jin-Hyun;Kim, Sung-Ho;Chung, Dong-Jun
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • Forest inventory is a commercial term meaning the preparation of detailed descriptive list of articles with number, quantity and value of each item included. Forest inventory deals with the measurement of trees and stands, the estimation of their volume, growth prediction, biomass, carbon stocks and the description tree characteristics, as well as the land upon which they are growing. National Forest Inventory Center (NFIC) in Korea conducts national forest inventory every 5 years to obtain accurate baseline data for national forest policy. The permanent sample plot data used in were collected by NFI. The objective of this study was to develop methods for quantifying forest resources at national scale based on $5^{th}$ National Forest Inventory (NFI) data in Korea. Forest land area decreased from 6.44 to 6.38 million ha between 1997 and 2007, continuing a slight downward trend in area beginning in the late 1990s. However forest resources of the Korea have continued improving in general condition and quality, as measured by increased average size and volume of trees. Growing-stock volume of the Korea increased from 17 to 123.79 cubic meter per ha between 1976 and 2007. The biomass in Korea was estimated to be 153.81 tons per hectare and carbon stocks in Korea was estimated to be 84.36 tons per hectare by NFI data. This information is important for government officials, public administration, the private business sector, and the researcher. Forest Inventory should be implemented in a way to be able to monitor and assess the forests continuously.

  • PDF

Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang

  • Temgoua, Lucie Felicite;Solefack, Marie Caroline Momo;Voufo, Vianny Nguimdo;Belibi, Chretien Tagne;Tanougong, Armand
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2018
  • This study was carried out in the teaching and research forest of the University of Dschang in Belabo, with the aim of analysing land-cover and land-use changes as well as carbon stocks dynamic. The databases used are composed of three Landsat satellite images (5TM of 1984, 7ETM + of 2000 and 8OLI of 2016), enhanced by field missions. Satellite images were processed using ENVI and ArcGIS software. Interview, focus group discussion methods and participatory mapping were used to identify the activities carried out by the local population. An inventory design consisting of four transects was used to measure dendrometric parameters and to identify land-use types. An estimation of carbon stocks in aboveground and underground woody biomass was made using allometric models based on non-destructive method. Dynamic of land-cover showed that the average annual rate of deforestation is 0.48%. The main activities at the base of this change are agriculture, house built-up and logging. Seven types of land-use were identified; adult secondary forests (64.10%), young secondary forests (7.54%), wetlands (7.39%), fallows (3.63%), savannahs (9.59%), cocoa farms (4.28%) and mixed crop farms (3.47%). Adult secondary forests had the highest amount of carbon ($250.75\;t\;C\;ha^{-1}$). This value has decreased by more than 60% for mixed crop farms ($94.67\;t\;C\;ha^{-1}$), showing the impact of agricultural activities on both forest cover and carbon stocks. Agroforestry systems that allow conservation and introduction of woody species should be encouraged as part of a participatory management strategy of this forest.

Estimation of Aboveground Biomass and Belowground Nutrient Contents for a Phyllostachys pubescens stand (맹종죽(孟宗竹) (Phyllostachys pubescens) 임분(林分) 내(內) 지상부(地上部) 생체량(生體量) 및 지하부(地下部) 양분(養分) 함량(含量) 추정(推定))

  • Hwang, Jaehong;Chung, Young-Gyo;Lee, Sang-Tae;Kim, Byung-Bu;Shin, Hyun-Cheol;Lee, Kyung-Jae;Park, Kyu-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.3 s.160
    • /
    • pp.161-167
    • /
    • 2005
  • Above and belowground biomass for Phyllostachys pubescens was determined in Jinju, Gyeongsangnam-do. Regression analyses of dry weights of culms, foliages, and twigs versus diameter at breast height were used to calculate regression equations of the form of log Y = a + blogX. Total aboveground biomass for Phyllostachys pubescens was 69.7 ton/ha and rhizomes and roots biomass were 13.7 ton/ha and 7.5 ton/ha, respectively. Culms account for about 60% of total aboveground biomass. The aboveground biomass of each component was decreased in the order of culms>foliages>twigs. As diameter at breast height grew thicker, the proportion of culms to total aboveground biomass increased. The proportion of dry weight of culms to green weight gradually increased with height in a bamboo tree and ages. Nutrients (kg/ha) of litter layer were distributed as follows: N(45.1), Ca(17.3), K(6.1), Mg(3.6), P(3.5) and Na(0.7). Nitrogen and K were given much weight in total nutrients of rhizomes and roots. These results will be useful in measuring carbon stock and drawing up management plan to increase it for Phyllostachys pubescens stand.

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.

Mapping and Assessment of Forest Biomass Resources in Korea (우리나라 산림 바이오매스 자원량 평가 및 지도화)

  • Son, Yeong Mo;Lee, Sun Jeoung;Kim, Sowon;Hwang, Jeong Sun;Kim, Raehyun;Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.431-438
    • /
    • 2014
  • This study was conducted to assess forest biomass resource which is a carbon sink and a renewable resource in Korea. The total forest biomass resource potential was 804 million tons, and conifers, broadleaved forest and mixed forest accounted for 265 million tons, 282 million tons, and 257 million tons, respectively. Proportionately to regional forest stocks, biomass potential of Gangwon-do had most biomass potential, followed by Gyeongsangbuk-do and Gyeongsangnam-do. The woody biomass from the byproduct of sawn timber in commercial harvesting was 707 thousand ton/year, and that from the byproduct of forest tending was 592 thousand ton/year. The amount resulted in about 1,300 thousand ton/year of potential supplies from forest biomass resource into the energy market. It's tonnage of oil equivalent(toe) was 585 thousand ton/year. In this study, we developed a program (BiomassMap V2.0) for forest biomass resource mapping. Used system to develop this program was Microsoft Office Excel, Microsoft Office Access ArcGIS and Microsoft Visual Basic 6.0. Additionally, This program made use of tool such as ESRI MapObjects2.1 in order to take advantage of spatial information. This program shows the map of total biomass stock, annual biomass growth at forest land in Korea, and biomass production from forest tending and commercial harvesting. The information can also be managed by the program. The biomass resource map can be identified by regional and forest type for the purpose of utilization. So, we expect the map and program to be very useful for forest managers in the near future.

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea (국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계)

  • BOO-KEUN KHIM;JU-YEON YANG;HYUK CHOI;KWANGKYU PARK;KYUNG HOON SHIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.158-177
    • /
    • 2023
  • An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

Biomass Expansion Factors for Pinus densiflora in Relation to Ecotype and Stand Age (소나무의 생태형과 임령에 따른 물질 현존량 확장계수)

  • Park, In Hyeop;Park, Min Su;Lee, Kyeong Hak;Son, Yeong Mo;Seo, Jeong Ho;Son, Yowhan;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.441-445
    • /
    • 2005
  • Researches on estimating national-scaled forest biomass are being carried out to quantify the carbon stock of forests with the Kyoto Protocol. In general, estimates of national-scaled forest biomass are based on forest inventory data which provides estimates of forest area, stem volume, and growth of stem by age classes. Estimates of forest biomass are, however, obtained by converting stem volumes to dry weight with stem density and thereafter to whole tree biomass with biomass expansion factors (ratios of whole tree dry weight to stem dry weight). Pinus densiflora is widely distributed and one of the most economically important timber species in Korea. The species are largely grouped into two ecotypes of Geumgang and Jungbu. Stems of Geumgang type trees are straight and high compared to those of Jungbu type trees. The objective of this study was to determine and compare stem density and biomass expansion factors fore two ecotypes of Pinus densiflora according to stand age. Stem density of both ecotypes of Pinus densora increased and biomass expansion factors of them decreased with increasing tree age. In he same age class, stem density and biomass expansion factor of Geungang type Pinus densiflora were lower than those of Jungbu type Pinus densiflora. There were statistically significant differences in stem density and biomass expansion factors between Geumgang type and Jungbu type Pinus densiflora in 0-20-year-old stands and 40-60-year-old stands. Our results suggested that the reliability of the national forest biomass inventory could be improved by applying the ecotype- and age-dependent stem density and biomass expansion factors.