• Title/Summary/Keyword: Biomass Fuel

Search Result 364, Processing Time 0.032 seconds

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Services of Algae to the Environment

  • Rai, Lal-Chand;Har Darshan Kumar;Frieder Helmut Mohn;Carl Johannas Soeder
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.119-136
    • /
    • 2000
  • Being autotrophic, algae occupy a trategic place in the biosphere. They produce oxygen both directly and indirectly through the chloroplasts of all green plants. The chloroplasts are believed to have originated from archaic prokaryotic algae through endosymbiosis with primitive eukaryotic cells. Phytoplankton and other algae regulate the global environment not only by releasing oxygen but also by fixing carbon dioxide. They affect water quality, help in the treatment of sewage, and produce biomass. They can be used to produce hydrogen which is a clean fuel, and biodiesel, and fix $N_2$ for use as a biofertilizer. Some other services of algae to the environment include restoration of metal damaged ecosystems, reducing the atmospheric $CO_2$ load and citigating global warming, reclamation of saline-alkaline unfertile lands, and production of dimethyl sulphide (DMS) and oxides of nitrogen (NOx) involved in the regulation of UV radiation. ozone concentration, and global warming. Algae can be valuable in understanding and resolving certain environmental issues.

  • PDF

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

Biodiesel Production Using Microalgal Marine Biomass (미세조류 해양 바이오매스를 이용한 바이오디젤 생산기술)

  • Jo, Byung-Hoon;Cha, Hyung-Joon
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • The demand of biodiesel that is a renewable, alternative fuel for fossil-based petrodiesel seems to keep increasing. Exploiting lipids of microalgae as a raw material for biodiesel is already technically feasible. To realize economical production of microalgal biodiesel, several factors or strategies should be addressed and improved. Especially, researches on improvement of lipid synthesis by genetic or metabolic engineering are now in early stage, and prospects of this field are bright, requiring concerns and interests of many researchers to put practical use of microalgal biodiesel forward.

Bioenergy Crop Production and Research Trends (바이오에너지 원료작물 생산 및 연구동향)

  • Kim, Kwang-Soo;Kim, Young-Bum;Jang, Young-Seok;Bang, Jin-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The increasing industrialization of the world has led to precipitous rise for the demand of petroleum-based fuels. The world is presently confronted with the twin crises of fossil fuel depletion and environmental pollution. The search for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present. Bioenergy is playing an increasingly important role as an alternative and renewable source of energy. Use of Bioenergy has several potential environmental advantages. The most important perhaps is reduction in life cycle greenhouse gases emissions relatives petroleum fuels, since bioenergy is derived from plants which convert Carbon dioxide ($CO_{2}$) into Carbohydrates in their growth. Bioenergy includes solid biomass, biomas and liquid bio-fuels which are fuels derived from crop plants, and include biomass that's directly burned. The two most important bio liquid fuels today are bioethanol from fermenting grain, grass, straw or wood, and biodiesel from plant seed oil.

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

Equipment Development for Downdraft Gasification of Coffee Leaves (하향류식 커피박 가스화 장치 개발)

  • Cho, En-man;Kim, Bong-hwan;Kim, Dong-gun;Jung, Won-hoon;Lee, Sang-moon;Jang, Young-hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.80-85
    • /
    • 2021
  • The gasification of coffee leaves, which are a type of biomass waste, was conducted on a pilot of a downdraft fixed gasification system to investigate the gasification characteristics. The experiment was performed using a coffee leaf pellet size and a batch-type gasification system consisting of a gasifier, cooling cyclone, scrubber, and bag filter. It was found that the air-to-fuel ratio was 2.32 Nm3/kg·h and the reaction temperature was 700 ℃-900 ℃. However, the air flow rate changed to 0.45 Nm3/min, which was lower than the initial starting value depending on the temperature change during the gasification process. It was concluded that coffee leaves can be converted from biomass waste into useful synthetic gas as an alternative energy source.

Mixotrophic Cultivation of Marine Alga Tetraselmis sp. Using Glycerol and Its Effects on the Characteristics of Produced Biodiesel

  • Dang, Nhat Minh;Kim, Garam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.222-228
    • /
    • 2022
  • As a possible feedstock for biodiesel, the marine green alga Tetraselmis sp. was cultivated under different conditions of phototrophic, mixotrophic and heterotrophic cultures. Glycerol, a byproduct from biodiesel production process, was used as the carbon source of mixotrophic and heterotrophic culture. The effects of glycerol supply and nitrate-repletion were compared for different trophic conditions. Mixotrophic cultivation exhibited higher biomass productivity than that of phototrophic and heterotrophic cultivation. Maximum lipid productivity of 55.5 mg L-1 d-1 was obtained in the mixotrophic culture with 5 g L-1 of glycerol and 8.8 mM of nitrate due to the enhancement of both biomass and lipid accumulation. The major fatty acid methyl esters (FAME) in the produced biodiesel were palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). The degree of unsaturation was affected by different culture conditions. The biodiesel properties predicted by correlation equations based on the FAME profiles mostly complied with the specifications from the US, Europe and Korea, with the exception of the cold-filter plugging point (CFPP) criterion of Korea.

Determinants of Household Cooking Fuel Choice in Cambodia (캄보디아 가구의 취사용 연료 결정요인 분석)

  • Choi, Si Won;Kang, Sung Jin
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.469-497
    • /
    • 2020
  • More than one-third of the world's population still has no access to clean cooking facilities despite global interest and efforts to expand the accessibility of clean cooking fuels. They use traditional biomass, i.e., crops, animal dung and firewood, as their cooking fuel, and the health and economic damage from it is severe. As many studies have been conducted to understand the choice and transition of cooking fuel in developing countries, characteristics of household head have been addressed as one of the main fuel determinants. However, decision-making in households is not only made by household head and can vary depending on the relative characteristics of household members. Thus, this study analyses the determinants of cooking fuel choice through the samples of Cambodian couples(household head and his/her spouse) considering both characteristics of husbands and wives. As a result, it is confirmed that the effects of characteristics, such as employment, education levels, and frequency of media use, between husbands and wives on cooking fuel choice were different. This study is expected to contribute to the development of more sophisticated policies to increase clean fuel in Cambodia, given that it takes into account the characteristics of spouses who have not previously been dealt with in analyzing the determinants of cooking fuel choice and that it is difficult to find research on Cambodia.