• Title/Summary/Keyword: Biomass Combustion

Search Result 188, Processing Time 0.028 seconds

Properties of Mortar mixed with Lignocellulosic Combustion By-products (목질계 연소부산물 혼입 모르타르 물성 평가)

  • Jeong, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.77-78
    • /
    • 2023
  • This paper experimentally examined the recycling of combustion by-products emitted from a combined heat and power plant using lignocellulosic biomass fuel. Physical and chemical analyzes were performed on Bio-SRF and three types of wood pellet combustion by-product samples (fly-ash, FA). As a result of the experiment, the compressive strength of mortar substituted with 5, 10, and 20% of FA compared to the cement weight was found to be excellent, and its recyclability was confirmed as a substitute for existing admixtures.

  • PDF

Study on the Characteristics of Bio-mass according to Various Process of Torrefaction (반탄화 공정 변화에 따른 바이오매스 연료의 특성 연구)

  • Ohm, Tae-In;Chae, Jong-Seong;Kim, Jung-Ku;Choi, Soo-A;Oh, Sea-Cheon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.375-378
    • /
    • 2014
  • In this study, we carried out torrefaction experiment using PKS(Palm Kernel Shell), and Bagasse as a raw material of oversee of herbaceous biomass and using waste wood and logging residue as a raw material of domestic of woody biomass. And then, by analyzing the physical & chemical properties, we investigated the characteristics as a fuel. By using the result of thermo gravimetric analysis, the biomass residue was torrefied for 30 minutes at a temperature range of $250-350^{\circ}C$ in anaerobic condition. As a result, torrefied materials of moisture content are lower than raw, but of fixed carbon, calorific value and ash are higher than raw.

  • PDF

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.

A Study on The Flame Stability of Pellet Combustor Using Swirling Flow (선회유동을 이용한 펠릿연소기의 화염안정화 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok;Wang, Zhen-Wei
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk;Park, Seung-Shik
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Study on Low Temperature Pyrolysis of Woody Biomass to Produce High-Calorie Torrefied Fuel (고열량 반탄화 연료 생산을 위한 목질계 바이오매스 저온열분해 방법에 대한 연구)

  • Lee, Changyeop;Kwon, Minjun;Kim, Daehae;Kim, Sewon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.263-263
    • /
    • 2014
  • Low temperature pyrolysis of woody biomass has been conducted to produce highcalorie torrefied fuel. In this experiment, to maximize the energy efficiency in heat transfer, flue gas is directly used for heat source in the torrefier. To accomplish the oxygen free environment in the torrefaction reactor, a burner has been developed and it can be runned with fuel rich state. An inner central axis rotating type of reactor was applied in experiment. To use the calorific gases produced from torrefier, another burner is developed to combust them.

  • PDF

Experimental study on oxygen free torrefaction process to produce high quality biomass fuel (고열량 바이오매스 연료 생산을 위한 무산소 반탄화 방법에 대한 실험적 연구)

  • Lee, Changyeop;Kim, Sewon;Shin, Myungchul;Kwon, Minjun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.205-206
    • /
    • 2012
  • A novel torrefaction process is suggested to improve energy efficiency and to produce high quality biomass fuel. Major developments for novel torrefaction process are as follows. To maximize the energy efficiency in heat transfer, flue gas is directly used for heat source in the torrefier. To accomplish the oxygen free environment in the torrefaction reactor, a burner is developed and it can be runned with fuel rich state. To use the calorific gases produced from torrefier, another burner is developed to combust them. In the test, the novel torrefaction process leads low energy consumption and the quality of torrefied fuel becomes better.

  • PDF

Pyrolysis-Liquefaction of a Siberian Spruce Biomass (시베리아산 전나무 바이오매스의 열분해-액화반응)

  • Yoon, Sung-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.430-438
    • /
    • 2008
  • Siberian spruce, found in the northern temperature and boreal regions of the earth, is usable biomass as fuels. In this study, parameters of thermochemical degradation by pyrolysis-liquefaction reaction of siberian spruce such as the effect of reaction temperature, reaction time and degradation products and energy yields were investigated. The liquid products from pyrolysis-liquefaction of siberian spruce contained various kinds of cyclicketones, cresols, dimethyl phenols and benzenediols. Combustion heating value of liquid products from pyrolysis-liquefaction conversion processes was in the range of $7,650{\sim}7,800cal/g$. The energy yield in pyrolysis-liquefaction of siberian spruce was as high as 69.5% after 40min of reaction at $400^{\circ}C$. The liquid products from the thermochemical conversion of siberian spruce could be used as high octane value fuels and fuel additives.

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct (석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성)

  • Hyeon, Wan-Su;Jin, Yong-Gyun;Jo, Eun-Ji;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.