• Title/Summary/Keyword: Biomarker genes

Search Result 135, Processing Time 0.026 seconds

The Expression of Hsp70 and GST Genes in Mytilus coruscus Exposed to Water Temperature and Salinity (수온 및 염분 스트레스에 따 른 참담치, Mytilus coruscus에서 Hsp70 및 GST 유전자 발현에 대한 연구)

  • Kim, Chul Won;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.450-458
    • /
    • 2015
  • The heat shock proteins (Hsps), one of the most highly conserved groups of proteins, play crucial roles in protecting cells against environmental stressors, such as temperature, salinity, heavy metals and pathogenic bacteria. The glutathione S-transferases (GST) have important role in detoxification of oxidative damage, environmental chemicals and environmental stress. The purpose of this study is to investigate the gene expression of Hsp70 and GST on change of temperature and salinity in Mytilus coruscus. The M. coruscus was cultured in incubator of separate temperature and salinity (8, 20, $30^{\circ}C{\times}20$‰, 25‰, 30‰) for 28 days. Ten individuals in each group were selected after each 14 and 28 days exposure. Results that the expression of Hsp70 mRNA was no significant changed in M. coruscus exposed to temperature ($8^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$) and salinity (20‰, 25‰, 30‰) for 14 days. Whereas the expression of Hsp70 mRNA was increased in exposure to temperature $30^{\circ}C$ and salinity (20‰, 25‰, 30‰) for 28 days. The expression of GST mRNA was increased in exposure to temperature $30^{\circ}C$, salinity (25‰, 30‰) for 14 days and temperature ($8^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$), salinity (20‰, 25‰, 30‰) for 28 days. These results suggest that Hsp70 and GST were played roles in biomarker gene on the thermal and salinity stress.

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Novel Mutations in the Displacement Loop of Mitochondrial DNA are Associated with Acute Lymphoblastic Leukemia: A Genetic Sequencing Study

  • Yacoub, Haitham Ahmed;Mahmoud, Wael Mahmoud;El-Baz, Hatim Alaa El-Din;Eid, Ola Mohamed;ELfayoumi, Refaat Ibrahim;Elhamidy, Salem Mohamed;Mahmoud, Maged M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9283-9289
    • /
    • 2014
  • Background: Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children and represents approximately 25% of cancer diagnoses among those younger than 15 years of age. Materials and Methods: This study investigated alterations in the displacement loop (d-loop) region of mitochondrial DNA (mtDNA) as a risk factor and diagnostic biomarker for early detection and diagnosis of acute lymphoblastic leukemia. Using mtDNA from 23 subjects diagnosed with acute lymphoblastic leukemia, the first 450 bp of the d-loop region were amplified and successfully sequenced. Results: This revealed 132 mutations at 25 positions in this region, with a mean of 6 alterations per subject. The d-loop alterations in mtDNA in subjects were all identified as single nucleotide polymorphisms in a homoplasmic distribution pattern. Mutant alleles were observed in all subjects with individual frequency rates of up to 95%. Thirteen mutant alleles in the d-loop region of mtDNA occurred with a high frequency. Novel alleles and locations were also identified in the d-loop of mtDNA as follows: 89 G insertions (40%), 95 G insertions (13%), 182 C/T substitutions (5%), 308 C insertions (19%), and 311 C insertions (80%). The findings of this study need to be replicated to be confirmed. Conclusions: Further investigation of the relationship between mutations in mitochondrial d-loop genes and incidence of acute lymphoblastic leukemia is recommended.

S100A12 and RAGE Expression in Human Bladder Transitional Cell Carcinoma: a Role for the Ligand/RAGE Axis in Tumor Progression?

  • Khorramdelazad, Hossein;Bagheri, Vahid;Hassanshahi, Gholamhossein;Karami, Hormoz;Moogooei, Mozhgan;Zeinali, Masoud;Abedinzadeh, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2725-2729
    • /
    • 2015
  • Background: Transitional cell carcinoma (TCC) and prostate cancer are the most frequent cancers in the male genitourinary tract. Measurement of biological biomarkers may facilitate clinical monitoring and aid early diagnosis of TCC. The aim of the present investigation was to detect the mRNA levels of S100A12 and RAGE (receptor for advanced glycation end products) in patients suffering from bladder TCC. Materials and Methods: To explore the involvement of S100A12 and RAGE genes, total RNA was harvested from cancer tissues and samples obtained from normal non-tumorized urothelium of the same patients. Quantitative PCR (qPCR) was subsequently employed to determine the mRNA levels of S100A12 and RAGE. Results: The results showed that mRNA expression of S100A12 and RAGE was significantly up-regulated in the cancer tissue. Conclusions: According to the results presented in the current study, mRNA expression of S100A12 and RAGE might be as a useful biomarker for TCC. Therefore, this ligand-receptor axis possibly plays important roles in the development of TCC and may serve either as an early diagnostic marker or as a key factor in monitoring of response to treatment. More research is required concerning inhibition of the S100A12-RAGE axis in different cancer models.

MDM2 and TP53 Polymorphisms as Predictive Markers for Head and Neck Cancer in Northeast Indian Population: Effect of Gene-Gene and Gene-Environment Interactions

  • Bhowmik, Aditi;Das, Sambuddha;Bhattacharjee, Abhinandan;Choudhury, Biswadeep;Naiding, Momota;Deka, Sujata;Ghosh, Sankar Kumar;Choudhury, Yashmin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5767-5772
    • /
    • 2015
  • Background: Polymorphisms in the MDM2 309 (T>G) and TP53 72 (G>C) genes are reported to increase the susceptibility to head and neck cancer (HNC) in various populations. The risk for HNC is also strongly associated with etiologic habits such as smoking, alcohol consumption and/or chewing of betel quid (BQ). In a case-control study, we investigated the significance of the above polymorphisms alone, and upon interaction with one another as well as with various etiologic habits in determining HNC risk in a Northeast Indian population. Materials and Methods: Genotyping at 309 MDM2 and 72 TP53 in 122 HNC patients and 86 cancer free healthy controls was performed by PCR using allele specific primers, and the results were confirmed by DNA sequencing. Results: Individuals with the GG mutant allele of MDM2 showed a higher risk for HNC in comparison to those with the TT wild type allele (OR=1.9, 95%CI: 1.1-3.3) (p=0.022). The risk was further increased in females by ~4-fold (OR=4.6, 95% CI: 1.1-19.4) (P=0.04). TP53 polymorphism did not contribute to HNC risk alone; however, interaction between the TP53 GC and MDM2 GG genotypes resulted in significant risk (OR=4.9, 95% CI: 0.2-105.1) (p=0.04). Smokers, BQ- chewers and alcohol consumers showed statistically significant and dose-dependent increase in HNC risk, irrespective of the MDM2 genotype. Conclusions: MDM2 genotype could serve as an important predictive biomarker for HNC risk in the population of Northeast India.

Molecular Characterization and Expression Analysis of the Peroxisome Proliferator Activated Receptor Delta (PPARδ) Gene before and after Exercise in Horse

  • Cho, Hyun-Woo;Shin, Sangsu;Park, Jeong-Woong;Choi, Jae-Young;Kim, Nam-Young;Lee, Woon-Kyu;Lee, Hak-Kyo;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.697-702
    • /
    • 2015
  • While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta ($PPAR{\delta}$) gene and analyzed the expression of $PPAR{\delta}$ during exercise. $PPAR{\delta}$ is a known regulator of ${\beta}$-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse $PPAR{\delta}$ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse $PPAR{\delta}$. Horse $PPAR{\delta}$ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, $PPAR{\delta}$ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of $PPAR{\delta}$ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse $PPAR{\delta}$ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.

Cyclin D1, Retinoblastoma and p16 Protein Expression in Carcinoma of the Gallbladder

  • Srivastava, Vineeta;Patel, Brijesh;Kumar, Mohan;Shukla, Mridula;Pandey, Manoj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2711-2715
    • /
    • 2013
  • Background: Cancer of the gallbladder is a relatively rare neoplasm with a poor prognosis. The exact mechanisms of its genesis are not known and very little information is available on molecular events leading to labeling this as an orphan cancer. Materials and Methods: In this prospective case control study we evaluated the expression of p16, pRb and cyclin D1 by immunohistochemistry to study the G1-S cell-cycle check point and its possible role in gallbladder carcinogenesis. A total of 25 patients with gallbladder carcinoma (group I), 25 with cholelithiasis (group II) and 10 normal controls. were enrolled Results: Cyclin D1 expression was seen in 10 (40%) patients each with carcinoma and cholelithiasis while only in 2 (20%) of the normal gallbladders but differences were not statistically significant (p value=0.488). p16 was expressed in 12% patients of carcinoma of the gallbladder and 28% of cholelithiasis, however this difference was not statistically significant (p value=0.095). Retinoblastoma protein was found to be expressed in 50% of normal gallbladders and 6 (24%) of carcinoma and 8 (32%) of gallstones. The present study failed to demonstrate any conclusive role of cyclin D1/RB/ p16 pathway in carcinoma of the gallbladder. Conclusions: The positive relation observed between tumor metastasis and cyclinD1 expression and p16 with nodal metastasis suggested that higher cyclin D1/p16 expression may act as a predictive biomarker for aggressive behavior of gallbladder malignancies.

cDNA Cloning and Expression of a Cytochrome P450 1A (CYP1A) from the Pale Chub, Zacco platypus

  • Jeon, Hyoung-Joo;Park, Young-Chul;Lee, Wan-Ok;Lee, Jong-Ha;Kim, Jin-Hyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.364-372
    • /
    • 2011
  • The pale chub (Zacco platypus) is generally found in Asian countries, such as Korea, Japan, and China. Nevertheless, very little information exists about the genes involved in the metabolism of xenobiotics in this species. This species is useful in monitoring the environmental impact on various pollutants in freshwater as a sentinel fish species. We cloned the full-length cDNA sequence of xenobiotic metabolizing cytochrome P450 1A (CYP1A) gene from Z. platypus and characterized it. Tissue distribution and timedependent induction of CYP1A were studied by real-time RT-PCR. Induction pattern of CYP1A was studied by exposing the fish to an arylhydrocarbon receptor agonist, ${\beta}$-naphthoflavone (BNF). The liver showed the highest level of expression in basal state as well as BNF- treated fish. However, appreciable levels of expression were also recorded in Gill and kidney and the least level of expression was observed in the eye. The results of the time-course study revealed an induction in the liver, brain, and gills after 6 h and 12 h in most of the tissues. This study provides an insight into the xenobiotics metabolizing system of Z. platypus and offers baseline information for further research related to biomarker, stress, and adaptive response of this ecologically important fish species in the freshwater environment.

Effect of Body Mass Index on Global DNA Methylation in Healthy Korean Women

  • Na, Yeon Kyung;Hong, Hae Sook;Lee, Duk Hee;Lee, Won Kee;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.467-472
    • /
    • 2014
  • Obesity is known to be strongly associated with cardiovascular disease and cancer, the leading causes of mortality worldwide, and develops owing to interactions between genes and the environment. DNA methylation can act as a downstream effector of environmental signals, and analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. Global DNA methylation of peripheral blood cells has recently been proposed as a potential biomarker for disease risk. Repetitive element DNA methylation has been shown to be associated with prominent obesity-related chronic diseases, but little is known about its relationship with weight status. In this study, we quantified the methylation of Alu elements in the peripheral blood DNA of 244 healthy women with a range of body mass indexes (BMIs) using pyrosequencing technology. Among the study participants, certain clinical laboratory parameters, including hemoglobin, serum glutamic oxaloacetic transaminase, serum glutamic- pyruvic transaminase, total cholesterol, and triglyceride levels were found to be strongly associated with BMI. Moreover, a U-shaped association between BMI and Alu methylation was observed, with the lowest methylation levels occurring at BMIs of between 23 and $30kg/m^2$. However, there was no significant association between Alu methylation and age, smoking status, or alcohol consumption. Overall, we identified a differential influence of BMI on global DNA methylation in healthy Korean women, indicating that BMI-related changes in Alu methylation might play a complex role in the etiology and pathogenesis of obesity. Further studies are required to elucidate the mechanisms underlying this relationship.

Amplification of the UQCRFS1 Gene in Gastric Cancers

  • Jun, Kyong-Hwa;Kim, Su-Young;Yoon, Jung-Hwan;Song, Jae-Hwi;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • Purpose: The specific aim of this study is to unravel a DNA copy number alterations, and to search for novel genes that are associated with the development of Korean gastric cancer. Materials and Methods: We investigated a DNA copy number changes in 23 gastric adenocarcinomas by array-comparative genomic hybridization and quantitative real-time polymerase chain reaction analyses. Besides, the expression of UQCRFS1, which shows amplification in array-CGH, was examined in 186 gastric cancer tissues by an immunohistochemistry, and in 9 gastric cancer cell lines, as well as 24 gastric cancer tissues by immunoblotting. Results: We found common gains at 48 different loci, and a common loss at 19 different loci. Amplification of UQCRFS1 gene at 19q12 was found in 5 (21.7%) of the 23 gastric cancers in an array-comparative genomic hybridization and DNA copy number were increased in 5 (20.0%) out of the 25 gastric cancer in quantitative real-time polymerase chain reaction. In immunohistochemistry, the overexpression of the protein was detected in 105 (56.5%) out of the 186 gastric cancer tissues. Statistically, there was no significant relationship between the overexpression of UQCRFS1 and clinicopathologic parameters (P>0.05). In parallel, the overexpression of UQCRFS1 protein was confirmed in 6 (66.7%) of the 9 gastric cancer cell lines, and 12 (50.0%) of the 24 gastric cancer tissues by immunoblotting. Conclusions: These results suggest that the overexpression of UQCRFS1 gene may contribute to the development and/or progression of gastric cancer, and further supported that mitochondrial change may serve as a potential cancer biomarker.