• Title/Summary/Keyword: Biological weathering

Search Result 66, Processing Time 0.028 seconds

Quantitative Evaluation for Effectiveness of Consolidation Treatment by Using the Chemical of Ethyl Silicate Series for the Sandstone in Yeongyang (영양 사암을 대상으로 한 에틸실리케이트 계열 처리제의 강화효과 평가)

  • Lee, Jang-Jon;Han, Min-Su;Song, Chi-Young;Jun, Byung-Kyu;Do, Min-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.125-136
    • /
    • 2009
  • Stone cultural heritages in Korea have a severe damages from chemical and biological weathering because most of them have been situated in outdoors without any suitable protection systems, and this in turn causes deformation and structural damage. To counteract these problems and increase durability, various kinds of conservation materials are used in the conservation and restoration treatments. However until now there are not many practical and technological experiments on this subject. This paper attempts quantitative evaluation of effectiveness about chemical of ethylsilicate based resin for sandstone in Yeongyang-gun. It takes a long time to evaluate durability and side effect after conservation materials treatment. So we use artificial weathering through freezing§ thawing experimental method. As a result of this experiment, porosity and absorptance increased, and elastic wave speed, elastic modules, unconfined compression strength and tensile strength decreased more than before. This study plans to make a scientific method study about weathering factor and mechanism, and to deduce correlation between artificial weathering and natural weathering.

  • PDF

A Study on the Change of Conservation Materials Properties Using Artificial Weathering Test (인공풍화 실험을 이용한 보존처리제의 물성 변화 연구)

  • Do, Min-Hwan;Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.149-162
    • /
    • 2008
  • Because stone cultural heritages in Korea are mostly situated outdoors without any notable protection, there are severe damages from physical, chemical and biological weathering. And this in turn causes deformation and structural damage. To counteract this problem and increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiments on this subject. Accordingly this research is for analysis of effect for treatment to make use a resin of the ethyl silicate for the granite in Mt. Nam of Gyeongju. It takes a long time to confirm the test result regarding durability and side effects of the conservatives after treatment. So we built up an artificial environment through freezing and melting test, and evaluated the conservation materials. As a result of this experiment, porosity and absorptivity was increased in accordance with processing of freezing and melting test. But other things such as elastic wave speed, elastic modulus, uniaxial compressive strength and tensile strength was decreased. It will make a plan to form a method of research systematically for mechanism and element of weathering and to elicit a correlation among experiment of artificial weathering and practical natural weathering from next research.

  • PDF

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Climate Change Impact on Korean Stone Heritage: Research Trends and Prospect (국내 석조유산의 기후변화 영향: 연구동향과 미래전망)

  • Kim, Jiyoung
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.437-448
    • /
    • 2016
  • Studies on vulnerability of cultural heritage and adaptation strategy to worldwide climate change have been actively carried out in advanced countries since the late 20th century, and this established a valid research methodology and piled up climate and deterioration dataset in the field of climate change. Meanwhile, we still have tasks to acquire related scientific data despite referencing political researches in Korea. Applying Korean future climate to impact analysis, deterioration of Korean stone heritage is likely prospected to change into complexity in terms of physical, chemical and biological weathering that may bring impacts on conservation business and administrative field of cultural heritage. Further studies will ensure detailed implication of climate change impact on Korean stone heritage by means of down-scaling analysis of areas to local scale and dataset frequency to an hour. It is important to sort out capability and vulnerability of the stone heritage to future environment, and to make an adaption and prevention strategies.

Material Characteristics and Quantitative Deterioration Assessment of the Sinwoldong Three-storied Stone Pagoda in Yeongcheon, Korea (영천 신월동삼층석탑의 재질특성과 훼손도 정량평가)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Chae, Seong-Tae;Jung, Young-Dong
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • The Yeongsheon Sinwoldong three-storied stone pagoda (Treasure No. 465) composed mainly of drusy alkali-granite. The major rock-forming minerals are biotite, quartz, amphiboles, orthoclase and plagioclase. Yellowish brown and black discoloration are formed at the eight sculpture Buddha of the stylobate. A broken rock fragments in the roof material were repaired using epoxy resin and cement mortar in the past. As a result of the infrared thermography analysis from the pagoda, cracks and exfoliation were not serious. Also, P-XRF analysis showed that concentration of Fe (mean 5,599ppm) and S (mean 3,270ppm) were so high in yellowish discoloration parts. Black discoloration area was detected highly Mn (mean 2,155ppm) concentration around the eight sculpture Buddha of the stylobate. The main reason for these are inorganic contaminants from disengaged rock ingredient and organic contaminants from withered plant body. Degree of physical weathering is relatively high in the southern and northern side. The eastern and western side had similar with weathering condition. The northern and eastern side were serious discoloration and biological weathering relatively. Therefore, we suggest that the pagoda need to do cleaning of biological contaminant and conservation treatment to weakened materials of rock and long term monitoring.

Weathering and Degradation Assessment of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea

  • Lee, Chan Hee;Lee, Myeong Seong;Kim, Jiyoung
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • The West Stone Pagoda at Gameunsaji Temple Site constructed in the 7th century is mainly composed of dark grey dacitic tuff bearing small numerous dioritic xenoliths. These xenoliths resulted in small holes due to differential weathering process from the host rocks. Physical strength of the pagoda was decreased due to weathering and damage caused by petrological, biological and coastal environmental factors. The southeastern part of the pagoda was extremely deteriorated that the rock surface showed exfoliation, fracture, open cavity, granular decomposition of minerals and salt crystallization by seawater spray from the eastern coast. The stone blocks were intersected by numerous cracks and contaminated by subsequent material such as cement mortar and iron plates. Also, the pagoda was colonized by algae, fungi, lichen and bryophytes on the roof rock surface and the gaps between the blocks. As a result of ultrasonic test, the rock materials fell under Highly Weathered Grade (HW) or Completely Weathered Grade (CW). Thus, conservational intervention is essentially required to prevent further weakening of the rock materials.

An Estimation on the Field Application of Consolidants According to Rock Quality (암석 재질에 따른 보존처리제의 현장 적용성 평가)

  • Kim, Jae-Hwan;Han, Min-Su;Lee, Jang-Jon;Song, Chi-Young;Lee, Jae-Man;Kim, Min-Ji;Lee, Myeong-Sung
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.79-91
    • /
    • 2009
  • Stone cultural heritages are mostly situated in field, so they are damaged from mechanical, chemical and biological weathering, and their degree of strength is also weaken. Therefore, the scientific conservation of the stone cultural heritages are necessary in order to the long-term maintenance and safety conservation. In this study, we attempt to estimate on the field application of consolidants which are Wacker OH 100, Remmers KSE 300 and 1T1G according to the quality of the rocks. Based on the ultrasonic velocity, conditions of weathering damage before treatment are mainly ranked completely weathering condition (CW) or partly highly weathering condition (HW). After the first treatment, weathering damage conditions are changed by the high weathering condition (HW). These results shows that the internal pores of stone are filled with consolidant materials, so average ultrasonic velocities increases after treatment. And Remmers KSE 300 which is consolidant material is highest rate of increase of average ultrasonic velocities.

  • PDF

Reaction Path Modeling of Granitic Cultural Properties and Its Implication for Preservation (화강암질 석조문화재의 풍화반응경로 특성과 보존에 대한 제언)

  • Park Maeng-Eon;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Dissolution rate of minerals may differ from climates configuration, but weathering rate of feldspars is generally proved to be relatively higher The result of geochemical reaction modeling indicates the acid water of pH 4.5 excluding any other variables, was 2.3 times higher than that in ordinary rain of pH 5.7. This result proved that pH is very important factor in preservation of granite cultural properties. To prevent the weathering of stone cultural properties, weathering characteristics of stones should be studied first and constitution of dry environments, using water repellent or oil coating, isolating water which cause chemical weathering reaction like hydration and oxidization should be considered. Considering the long-term reactions between granite and rain, selection of materials, which can bring neutralization and non-oxidization conditions, are very important in using cleaning agents and biological controls.

Conservation Scheme and Deterioration States of the Wanggung-ri Five-storied Stone Pagoda in the Iksan, Korea (익산 왕궁리 5층 석탑의 훼손현황과 보존방안 연구)

  • Yang, Hee-Jae;Lee, Chan-Hee;Kim, Sa-Dug;Choi, Seok-Won
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.171-195
    • /
    • 2004
  • This research presents an evaluation of the weathering and deterioration state of the Wanggung-ri five-storied stone pagoda in the Iksan (National Treasure No. 289) and suggests conservational schemes. A deterioration map of the pagoda was drawn from the aspects of petrological, physical, chemical, biological, structural and artificial weathering.The rock properties consisting of the pagoda were medium-grained biotite granite that had leucocratic phenocryst developed in parts. The body of each story suffered severely from the secondary contamination that turned the colors into light grey, pitch dark, yellowish brown, and reddish brown as well as granular decomposition, exfoliation and peel-off. The roof stones were heavy exfoliated or peeled off in most of the cases. In addition to the fine cracks, there were layered cracks on the corners. The roof stones of the3rd and 4th story in the north and west side had some stones fall-off, while those of the 2ndstory in the north side had steel reinforcement filled for a fixing purpose. Those of the 5th story showed big gaps that must have originated from cracks and were easily subject to granular decomposition and rainfall. The inside clay filler was missing in the lower part of the roof stones of the 4th and 5th story and the supporting stones, which were thus covered by light grey or pitch dark sediments. The contact area of the materials was about 70 % in the parts where there was a space due to the filler missing and washigher than 90 % in the lower parts of the pagoda. About 90 % or more of the roof stones surface of each story were covered by aerial plants that formed a thick biological mat. Thus it seemed necessary to come up with the conservational measures to remove the plans living on the surface of the stone materials, with the plans to prevent rain from falling inside, and with the water repellent and hardening treatments to postpone the surface weathering of the rock properties. All those measures and plans must be based on the results of long-term monitoring and thorough detail investigations.

  • PDF

Geological Study on the Rocks of the Stone-Monuments-at the around the weonju City, Weonju-gun, Hwoengseong-gun and Hongcheon-gun (석조문화재의 암석에 관한 지질학적 조사 연구 (I)-원주시, 원주군, 횡성군 및 홍천군 지역을 중심으로)

  • Lee, Sang-Hun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.14-36
    • /
    • 1992
  • The investigation has been made on the rocks consisting the pagoda(12), Buddhist Statues(9) Buldaejwa and cakra(2, rewpectively), stele(5), and Flagpole wupport and stupa(6) which are stood in Weonju city, Weonju-gun, Hwoengseong-gun and Hongcheon-gun, Kangweondo. These rock-monuments range mostly in age from late Shilla Kingdom to middle Korye Kingdom. The geology around this region is mainly composed of Precambrian metamorphic rocks and mesozoic granitic rocks. The granitic rocks are largely divided into Jurassic and cretaceous ones which are slightly different in rock phase. The main rock phase consisting the monumentsare are coarse biotite granite with minor amount of hornblende in Jurassic age. Variation in rock phase is abserved even in part of the stone used in the monuments. Inclusions composed of biotite and hornblende, porphyritic texture with microcline phenocryst, igneous lineation and exfoliation according to weathering are observable in all rocks in these monuments. In the case of stele whose a body and a capstone is remained, one is composed of black slate and the other white limestone. But the turtle shaped pedestal is constituted of coarse biotite granite. These stone-monuments are strongly weathered and exfoliated out about 1∼2mm.In case of exfoliated weathering along igneous lineation, some are taken off about 3∼5mm thick. In some monuments, the degree of weathering is somewhat different according to position, grade of sculpture, and biological activity.

  • PDF