• Title/Summary/Keyword: Biological tissue

Search Result 1,376, Processing Time 0.027 seconds

Virtual Environments for Medical Training: Soft tissue modeling (의료용 훈련을 위한 가상현실에 대한 연구)

  • Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.372-377
    • /
    • 2007
  • For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in particular, has made it more difficult for an instructor to demonstrate the required manual skills. It has been recognized that, similar to flight simulators for pilots, virtual reality (VR) based surgical simulators promise a safer and more comprehensive way to train manual skills of medical personnel in general and surgeons in particular. One of the major challenges in the development of VR-based surgical trainers is the real-time and realistic simulation of interactions between surgical instruments and biological tissues. It involves multi-disciplinary research areas including soft tissue mechanical behavior, tool-tissue contact mechanics, computer haptics, computer graphics and robotics integrated into VR-based training systems. The research described in this paper addresses the problem of characterizing soft tissue properties for medical virtual environments. A system to measure in vivo mechanical properties of soft tissues was designed, and eleven sets of animal experiments were performed to measure in vivo and in vitro biomechanical properties of porcine intra-abdominal organs. Viscoelastic tissue parameters were then extracted by matching finite element model predictions with the empirical data. Finally, the tissue parameters were combined with geometric organ models segmented from the Visible Human Dataset and integrated into a minimally invasive surgical simulation system consisting of haptic interface devices and a graphic display.

  • PDF

Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study

  • Xiang Jin;Jin-Young Park;Jung-Seok Lee;Ui-Won Jung;Seong-Ho Choi;Jae-Kook Cha
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • Purpose: Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. Methods: Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. Results: The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. Conclusions: Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.

Tissue-specific expression of DNA repair gene, N-methylpurine-DNA glycosylase (MPG) in Balb/c mice without external damage

  • Kim, Nam-Keun;Lee, Sook-Hwan;Ko, Jung-Jae;Roy, Rabindra;Lee, Hey-Kyung;Kwak, In-Pyung;Cha, Kwang-Yul
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.31-34
    • /
    • 1998
  • The N-methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, removes N-methylpurine and other damaged purines induced in DNA. Tissue-specific mRNA levels of the N-methylpurine-DNA glycosylase (MPG) were investigated in Balb/c mice of four different growing stages; newborn, 1, 4 and 8-weeks postpartum. MPG expressions in the newborn and the 8-week-old mice were the highest in thymus and testis, respectively. The tested tissues of the newborn mice had consistently higher MPG mRNA level than 8-week-old adults except in testis and thymus. The MPG mRNA level in testis was the lowest in the newborn mice, but it attained the highest in the 8-week-old mice. The levels of MPG mRNA among the different tissues in the newborn and the 8-week-old mice were more than 9.0 and 19.0-fold respectively. These results suggest that the of MPG expression was dependent on the growing stage and had tissue-specificity.

  • PDF

Clinical Analysis of Bioprosthetic Heart Valves (인공 조직 판막의 임상 성적)

  • 김택진
    • Journal of Chest Surgery
    • /
    • v.24 no.11
    • /
    • pp.1074-1080
    • /
    • 1991
  • A total and consecutive 62 patients between 13 and 58 years of age receiving biological prosthetic heart valves at the Korea University Hospital from January 1978 through October 1983 were analyzed. Out of 71 valves replaced, 64 were Carpentier-Edwards valves, 4 were Ionescu-Shiley valves, 2 were Angell-Shiley valves, 1 was Hancock valve. Early mortality within 30 days after operation was noted in 4 cases[6.4%]. There were no cases of valve-related early death. The 58 early survivors were followed-up for a total 387 patient-year over a period of 3 years to 12 years[Mean$\pm$S.D: 6.37$\pm$2.51 years] at the follow-up end of April 1991. During follow-up, seven patients died and late mortality rate was 12%. There were two major late complications: the one is thromboembolism[1.6% /patient-year], the other is primary tissue failure[2.76% /patient-year]. Ten patients underwent re-replacement of 13 tissue valves because of primary tissue failure[nine Carpentier-Edwards, two Ionescu-Shiley, two Angell-Shiley]. There was operative mortality. The probabilities of freedom from primary tissue failure were 95.4% and 75.3% at 5 and 10 years after operation respectively, The actuarial survival rates were 86.2% and 81.8% at 5 and 10 years after initial surgery respectively.

  • PDF

Measurement of Nonlinear Propagation Characteristics of Vibration in the Tissue Using Bispectral Analysis (바이스펙트럼 해석을 이용한 생체조직 내에서의 진동의 비선형 전파특성 계측)

  • ;lgo
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 1993
  • It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propa gation characteristics of the internal vibration in the tissue for the low frequency mechanical vibra lion by using bispectral analysis is proposed. In the method, low frequency vibration of $f_0(=100Hz)$ is applied on the surface of the object, and the waveform of the internal vibration ${\times}{\;}(t)$ is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal ${\times}{\;}(t.)$ at the frequencies ($f_0,{\;}f_0$) and ($f_0,{\;}2f_0$) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, where since bispectrum is free from the gallssian additive noise we can get the value with high S/N. Basic experimental system is con structed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization.

  • PDF

A Study on the Estimation of Temperature Dependance in Tissue by Ultrasound (초음파에 의한 조직의 온도의존성에 관한 연구)

  • 이상민;박형배
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.165-172
    • /
    • 1989
  • In this paper, the temperature dependence of tissue is estimated by measuring the attenuation coefficient and the propagation velocity of ultrasonic reflection signal. And, on the basis of expeiments, the possibility of non- invasive temperature estimation is considered. Specimens in the experiment are acryl 1)late. muscle, fat and liver of pig. The temperature of specimen is controlled by water bath which is able to adjust temperature a quarter of a degree. Through the series of experiments, we conformed that the ultrasonic parameters have lin earity to a certain extents with the change of tissue's temperature. And we expect that noninvasive temperature estimation of tissue can be realized after several preconditions be satisfied with the standard experiment conditions and a great number of base data.

  • PDF

Temperature Measurement for the Human Head under Local Exposure of Electromagnetic Wave with 800MHz (800MHz대의 전자파에 노출된 두부의 온도 측정)

  • Park, Ju-Tae
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.70-76
    • /
    • 1999
  • With the recent increase in the use among young children of portable telephone public concern regarding potential health hazards due to a hot spot appearing inside the infant head, has been growing. Since the biological hazards due to RF exposure are caused mainly by a temperature-rise in tissue, the effect of localized SAR for portable telephones should also be related to the temperature-rise in the human head. In this paper, it was measured that in the actual use of portable telephone the temperature of the local tissue in the human-head change. As a result, it should be noted that the mean temperature of human-body and localized tissue is rising from beginning call. However the temperature variation of localized tissue is recovered rapidly as normal temperature, although the mean temperature of human-body rising continuously at ending call of portable telephone.

  • PDF

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

  • Coburn, Jeannine;Gibson, Matt;Bandalini, Pierre Alain;Laird, Christopher;Mao, Hai-Quan;Moroni, Lorenzo;Seliktar, Dror;Elisseeff, Jennifer
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.213-222
    • /
    • 2011
  • The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.

Implementation of an Ultrasound Elasticity Imaging System

  • Cho Gae-Young;Yoon Ra-Young;Park Jeong-Man;Kwon Sung-Jae;Ahn Young-Bok;Bae Moo-Ho;Jeong Mok-Kun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2006
  • Recently, active research has been going on to measure the elastic modulus of human soft tissue with medical ultrasound imaging systems for the purpose of diagnosing cancers or tumors which have been difficult to detect with conventional B-mode imaging techniques. In this paper, a real-time ultrasonic elasticity imaging system is implemented in software on a Pentium processor-based ultrasonic diagnostic imaging system. Soft tissue is subjected to external vibration, and the resulting tissue displacements change the phase of received echoes, which is in turn used to estimate tissue elasticity. It was confirmed from experiment with a phantom that the implemented elasticity imaging system could differentiate between soft and hard regions, where the latter is twice harder than the former, while operating at an adequate frame rate of 20 frames/s.

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.