• 제목/요약/키워드: Biological systems

검색결과 2,256건 처리시간 0.032초

Insulin Delivery Systems: Current Topic

  • Jeong, Seo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • 제16권3호
    • /
    • pp.89-100
    • /
    • 1986
  • Although insulin has been available for the treatment of diabetes mellitus for more than half a centry, the deficiency of conventional insulin therapy for diabetic patients have, to this date, not been satisfactorily overcome by any method. The development of potential delivery systems for insulin is highly important to prevent excessive fluctuation of plasma glucose levels, which results in long term complications in the diabetic. There are three major approaches toward development of glucose responding insulin delivery systems: A bioengineering approach is to devise mechanical components capable of releasing insulin in amounts appropriate to varying blood-glucose requirements. A biological approach relies upon cultured, living pancreatic beta cells encapsulated to constitute an insulin delivery unit. A biochemical approach is to synthesize a stable and biologically active glycosylated insulin that is complementary to the binding sites of lectin. This paper will cover several specific areas, including pancreatic transplantation(total or isolated islet cells), artificial pancreases(bioengineering or biological approach), controlled delivery system, glucose sensitive membrane systems, and a self-regulating insulin delivery system.

  • PDF

Synthetic Bacteria for Therapeutics

  • Lam VO, Phuong N.;Lee, Hyang-Mi;Na, Dokyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.845-855
    • /
    • 2019
  • Synthetic biology builds programmed biological systems for a wide range of purposes such as improving human health, remedying the environment, and boosting the production of valuable chemical substances. In recent years, the rapid development of synthetic biology has enabled synthetic bacterium-based diagnoses and therapeutics superior to traditional methodologies by engaging bacterial sensing of and response to environmental signals inherent in these complex biological systems. Biosynthetic systems have opened a new avenue of disease diagnosis and treatment. In this review, we introduce designed synthetic bacterial systems acting as living therapeutics in the diagnosis and treatment of several diseases. We also discuss the safety and robustness of genetically modified synthetic bacteria inside the human body.

식물기반 치료용 항체생산 (Plant-based production of therapeutic antibodies)

  • 김영관;소양강;박다영;김현순;전재흥;추영국;고기성
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.262-268
    • /
    • 2010
  • Antibodies are powerful and versatile tools to play a critical role in the diagnosis and treatment of many diseases. Their application has been enhanced significantly with the advanced recombinant DNA and heterologonous expression technologies, allowing to produce immunotherapeutic proteins with improved biofunctional properties. However, with currently available technologies, mammalian cell-based therapeutic antibody production, as an alternative for production in humans and animals, is often not plentiful for passive immunotherapeutics in treatment of many diseases. Recently, plant expression systems for therapeutic antibodies have become well-established. Thus, plants have been considered to provide an attractive alternative production system for therapeutic antibodies, as plants have several advantages such as the lack of human pathogens, and low cost of upstream production and flexible scale-up of highly valuable recombinant glycoproteins. Recent advances in modification of posttranslational processing for human-like glycosylation in transgenic plants will make it possible that plant can become a suitable protein expression system over the animal cellbased current production system. This review will discuss recent advances in plant expression technology and issues for their application to therapeutic antibody production.

Biological Nitrogen Removal System의 세균 군집 분석 (Structure of Bacterial Communities in Biological Nitrogen Removal System)

  • 김경미;이상일;이동훈
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이재하기 위하여 질산화 반응조 내 세균 군집 구조를 16S rRNA 유전자의 PCR 및 terminal restriction fragment length polymorphism (T-RELP)방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여재를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추기법을 이용한 영양염류 처리 Sequencing Batch Reactor (SBR)시스템이었고, 실험 결과 모든 시료에서 암모니아 산화 세균과 $\beta-proteobacteria$에 해당되는 말단 단편을 확인할 수 있었다. 암모니아 산화세균 군집에서 유래된 말단 단편의 염기서열을 분석한 결과 SBR공정에서는 Nitrosomonas와 Nitrosolobus에 속하는 군집 이 우점종임을 확인할 수 있었다. 그러나 다른 두 공정들에서는 $\beta-proteobacteria$에 속하는 미배양 균주와 Cardococcus australiensis와 염기서열 유사도가 높은 군집이 우점하였다. 또한, 암모니아산화 세균군집을 분석한 결과, SBR 공정이 암모니아 산화세균의 농화 배양에 가장 효과적인 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 폐수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

스마트폰을 이용한 유러닝 곤충관찰학습에 있어서 유사곤충 추론검색기법의 사용자 만족도 분석 (User Satisfaction Analysis on Similarity-based Inference Insect Search Method in u-Learning Insect Observation using Smart Phone)

  • 전응섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.203-213
    • /
    • 2014
  • 본 논문에서는 곤충 종의 외관구조인 머리, 몸통, 날개, 다리에 대한 관찰자의 일반적이고 수평적인 관찰특성에 따라 자유롭게 곤충 종을 관찰함으로써 관찰 곤충 검색엔진에서의 사용자 만족도 제고와 보다 효율적인 관찰학습의 방법을 제안한다. 자연생태 환경에서 초보 학습자의 효율적인 관찰검색과 효과적 학습을 위해서는 생물학적 분류체계가 아닌 곤충 종의 외관구조 즉, 외부 신체구조의 모양과 특성 중심의 곤충관찰 기반의 검색(Insect Search by Observation based on Insect Appearance: ISOIA)이 필요하다. 그러므로 본 연구에서는 곤충의 외관구조인 머리, 몸통, 날개, 다리에 대한 관찰자의 일반적인 관찰방법에 따른ISOIA 검색방식을 제안하고, 기존의 ISBC와 ISOBC 검색체계에 대한 사용 만족도를 비교 분석하여 본 논문에서 제안하는 ISOIA 검색 방안이 우수함을 보이고자 한다.

Somatic Mutaome Profile in Human Cancer Tissues

  • Kim, Nayoung;Hong, Yourae;Kwon, Doyoung;Yoon, Sukjoon
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.239-244
    • /
    • 2013
  • Somatic mutation is a major cause of cancer progression and varied responses of tumors against anticancer agents. Thus, we must obtain and characterize genome-wide mutational profiles in individual cancer subtypes. The Cancer Genome Atlas database includes large amounts of sequencing and omics data generated from diverse human cancer tissues. In the present study, we integrated and analyzed the exome sequencing data from ~3,000 tissue samples and summarized the major mutant genes in each of the diverse cancer subtypes and stages. Mutations were observed in most human genes (~23,000 genes) with low frequency from an analysis of 11 major cancer subtypes. The majority of tissue samples harbored 20-80 different mutant genes, on average. Lung cancer samples showed a greater number of mutations in diverse genes than other cancer subtypes. Only a few genes were mutated with over 5% frequency in tissue samples. Interestingly, mutation frequency was generally similar between non-metastatic and metastastic samples in most cancer subtypes. Among the 12 major mutations, the TP53, USH2A, TTN, and MUC16 genes were found to be frequent in most cancer types, while BRAF, FRG1B, PBRM1, and VHL showed lineage-specific mutation patterns. The present study provides a useful resource to understand the broad spectrum of mutation frequencies in various cancer types.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.