DOI QR코드

DOI QR Code

Synthetic Bacteria for Therapeutics

  • Lam VO, Phuong N. (School of Integrative Engineering, Chung-Ang University) ;
  • Lee, Hyang-Mi (School of Integrative Engineering, Chung-Ang University) ;
  • Na, Dokyun (School of Integrative Engineering, Chung-Ang University)
  • Received : 2019.04.10
  • Accepted : 2019.06.03
  • Published : 2019.06.28

Abstract

Synthetic biology builds programmed biological systems for a wide range of purposes such as improving human health, remedying the environment, and boosting the production of valuable chemical substances. In recent years, the rapid development of synthetic biology has enabled synthetic bacterium-based diagnoses and therapeutics superior to traditional methodologies by engaging bacterial sensing of and response to environmental signals inherent in these complex biological systems. Biosynthetic systems have opened a new avenue of disease diagnosis and treatment. In this review, we introduce designed synthetic bacterial systems acting as living therapeutics in the diagnosis and treatment of several diseases. We also discuss the safety and robustness of genetically modified synthetic bacteria inside the human body.

Keywords

References

  1. Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nat Rev. Microbiol. 12: 381-390. https://doi.org/10.1038/nrmicro3239
  2. Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martin HG. 2016. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl. 2: 16009. https://doi.org/10.1038/npjsba.2016.9
  3. Paddon CJ, Keasling JD. 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12: 355-367. https://doi.org/10.1038/nrmicro3240
  4. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556-563. https://doi.org/10.1016/j.copbio.2008.10.014
  5. Kim SY, Song MK, Jeon JH, Ahn JH. 2018. Current status of microbial phenylethanoid biosynthesis. J. Microbiol. Biotechnol. 28: 1225-1232. https://doi.org/10.4014/jmb.1805.05021
  6. Cheng F, Luozhong S, Yu H, Guo Z. 2019. Biosynthesis of chondroitin in engineered Corynebacterium glutamicum. J. Microbiol. Biotechnol. 29: 392-400. https://doi.org/10.4014/jmb.1810.10062
  7. Ruder WC, Lu T, Collins JJ. 2011. Synthetic biology moving into the clinic. Science 333: 1248-1252. https://doi.org/10.1126/science.1206843
  8. Folcher M, Fussenegger M. 2012. Synthetic biology advancing clinical applications. Curr. Opin. Chem. Biol. 16: 345-354. https://doi.org/10.1016/j.cbpa.2012.06.008
  9. Chen YY, Smolke CD. 2011. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci. Transl. Med. 3(106): 106ps42 https://doi.org/10.1126/scitranslmed.3002944
  10. Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Team AQAUai. 2019. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37: 100-115. https://doi.org/10.1016/j.tibtech.2018.09.005
  11. Mays ZJ, Nair NU. 2018. Synthetic biology in probiotic lactic acid bacteria: at the frontier of living therapeutics. Curr. Opin. Biotechnol. 53: 224-231. https://doi.org/10.1016/j.copbio.2018.01.028
  12. Jain A, Bhatia P, Chugh A. 2012. Microbial synthetic biology for human therapeutics. Syst. Synth. Biol. 6: 9-22. https://doi.org/10.1007/s11693-012-9092-0
  13. Riglar DT, Silver PA. 2018. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16: 214-225. https://doi.org/10.1038/nrmicro.2017.172
  14. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, et al. 2010. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3: 49-56. https://doi.org/10.1038/mi.2009.116
  15. Chien T, Doshi A, Danino T. 2017. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5: 1-8. https://doi.org/10.1016/j.coisb.2017.05.009
  16. Chen Z, He A, Liu Y, Huang W, Cai Z. 2016. Recent development on synthetic biological devices treating bladder cancer. Synth. Syst. Biotechnol. 1: 216-220. https://doi.org/10.1016/j.synbio.2016.08.001
  17. Chakravarti D, Wong WW. 2015. Synthetic biology in cellbased cancer immunotherapy. Trends Biotechnol. 33: 449-461. https://doi.org/10.1016/j.tibtech.2015.05.001
  18. Bhattarai SR, Yoo SY, Lee SW, Dean D. 2012. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials 33: 5166-5174. https://doi.org/10.1016/j.biomaterials.2012.03.054
  19. Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536: 81-85. https://doi.org/10.1038/nature18930
  20. Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36: 857-864. https://doi.org/10.1038/nbt.4222
  21. Wegmann U, Carvalho AL, Stocks M, Carding SR. 2017. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci. Rep. 7: 2294. https://doi.org/10.1038/s41598-017-02591-6
  22. Slomovic S, Pardee K, Collins JJ. 2015. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl. Acad. Sci. USA 112: 14429-14435. https://doi.org/10.1073/pnas.1508521112
  23. Courbet A, Renard E, Molina F. 2016. Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol. Med. 8: 987-991. https://doi.org/10.15252/emmm.201606541
  24. Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, et al. 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl. Acad. Sci. USA 111: 4838-4843. https://doi.org/10.1073/pnas.1321321111
  25. Daeffler KN, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, et al. 2017. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13: 923. https://doi.org/10.15252/msb.20167416
  26. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426-429. https://doi.org/10.1038/nature09415
  27. Jackson MR, Melideo SL, Jorns MS. 2012. Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51: 6804-6815. https://doi.org/10.1021/bi300778t
  28. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32: 275-287. https://doi.org/10.1046/j.1365-2958.1999.01345.x
  29. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177: 2813-2820. https://doi.org/10.1128/jb.177.10.2813-2820.1995
  30. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104: Unit 15.25.
  31. Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. 2015. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7(289): 289ra84. https://doi.org/10.1126/scitranslmed.aaa3519
  32. Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. 2017. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 23: 2061-2070. https://doi.org/10.1158/1078-0432.CCR-16-1599
  33. Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. 2008. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin. Cancer Res. 14: 2295-2302. https://doi.org/10.1158/1078-0432.CCR-07-4254
  34. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. 2007. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297: 151-162. https://doi.org/10.1016/j.ijmm.2007.01.008
  35. Gerdes K. 1988. The Parb (Hok Sok) Locus of plasmid-R1-a general-purpose plasmid stabilization system. Bio-Technol. 6: 1402-1405.
  36. Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, et al. 2009. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73: 534-552. https://doi.org/10.1111/j.1365-2958.2009.06771.x
  37. Claesen J, Fischbach MA. 2015. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4: 358-364. https://doi.org/10.1021/sb500258b
  38. Hamady ZZ, Scott N, Farrar MD, Lodge JP, Holland KT, Whitehead T, et al. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59: 461-469. https://doi.org/10.1136/gut.2008.176131
  39. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. 1995. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102: 448-455. https://doi.org/10.1111/j.1365-2249.1995.tb03836.x
  40. Cook DP, Gysemans C, Mathieu C. 2017. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8: 1961. https://doi.org/10.3389/fimmu.2017.01961
  41. Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. 1994. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J. Clin. Invest. 94: 1764-1777. https://doi.org/10.1172/JCI117524
  42. Abil Z, Xiong X, Zhao H. 2015. Synthetic biology for therapeutic applications. Mol. Pharm. 12: 322-331. https://doi.org/10.1021/mp500392q
  43. Ozdemir T, Fedorec AJH, Danino T, Barnes CP. 2018. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7: 5-16. https://doi.org/10.1016/j.cels.2018.06.008
  44. Sittipo P, Lobionda S, Lee YK, Maynard CL. 2018. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol. 56: 154-162. https://doi.org/10.1007/s12275-018-7548-y
  45. Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl. Acad. Sci. USA 107: 11260-11264. https://doi.org/10.1073/pnas.1001294107
  46. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82. https://doi.org/10.1016/j.cell.2004.06.009
  47. Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8: 15028. https://doi.org/10.1038/ncomms15028
  48. Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SS, et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7: 521. https://doi.org/10.1038/msb.2011.55
  49. Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. 1988. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care. 11 Suppl 1: 16-23.
  50. Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, et al. 2014. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63: 2876-2887. https://doi.org/10.2337/db13-1236
  51. Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. 1993. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366: 72-75. https://doi.org/10.1038/366072a0
  52. Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS. 2018. Dietary fatty acids control the species of N-Acylphosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infect. Dis. 4: 3-13. https://doi.org/10.1021/acsinfecdis.7b00127
  53. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124: 3391-3406. https://doi.org/10.1172/JCI72517
  54. Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. 2008. N-acylphosphatidylethanolamine, a gutderived circulating factor induced by fat ingestion, inhibits food intake. Cell 135: 813-824. https://doi.org/10.1016/j.cell.2008.10.043
  55. Pinero-Lambea C, Bodelon G, Fernandez-Perianez R, Cuesta AM, Alvarez-Vallina L, Fernandez LA. 2015. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4: 463-473. https://doi.org/10.1021/sb500252a
  56. Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, et al. 2016. RGD Peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated salmonella-mediated cancer therapy. Theranostics 6: 1672-1682. https://doi.org/10.7150/thno.16135
  57. Kramer MG, Masner M, Ferreira FA, Hoffman RM. 2018. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front. Microbiol. 9: 16. https://doi.org/10.3389/fmicb.2018.00016
  58. Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. 2014. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patientderived orthotopic xenograft (PDOX). J. Cell Biochem. 115: 1254-1261. https://doi.org/10.1002/jcb.24769
  59. Yamamoto M, Zhao M, Hiroshima Y, Zhang Y, Shurell E, Eilber FC, et al. 2016. Efficacy of tumor-targeting Salmonella A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude mouse model. PLoS One. 11: e0160882. https://doi.org/10.1371/journal.pone.0160882
  60. Bull MJ, Jolley KA, Bray JE, Aerts M, Vandamme P, Maiden MC, et al. 2014. The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci. Rep. 4: 7202. https://doi.org/10.1038/srep07202
  61. Dou J, Bennett MR. 2018. Synthetic biology and the gut microbiome. Biotechnol. J. 13: e1700159. https://doi.org/10.1002/biot.201700159
  62. Park W. 2018. Gut microbiomes and their metabolites shape human and animal health. J. Microbiol. 56: 151-153. https://doi.org/10.1007/s12275-018-0577-8
  63. Lee ES, Song EJ, Nam YD, Lee SY. 2018. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J. Microbiol. 56: 773-782. https://doi.org/10.1007/s12275-018-8293-y
  64. Wright O, Stan GB, Ellis T. 2013. Building-in biosafety for synthetic biology. Microbiology 159: 1221-1235. https://doi.org/10.1099/mic.0.066308-0
  65. Wang F, Zhang W. 2019. Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety Biosecurity 1: 22-30. https://doi.org/10.1016/j.jobb.2018.12.003

Cited by

  1. Recent advances in modulating the microbiome vol.9, 2019, https://doi.org/10.12688/f1000research.20204.1