• Title/Summary/Keyword: Biological signal

Search Result 1,271, Processing Time 0.029 seconds

Structure of a Methionine-Rich Segment of Escherichia coli Fifty Four Homologue Protein

  • Oh, Doo-Byoung;Yi, Gwan-Su;Chi, Seung-Wook;Kim, Hyoungman
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.26-26
    • /
    • 1996
  • The methionine-rich segments of the Fifty four homologue (Ffh) protein of Escherichia coli and its eukaryotic counterpart SRP54 are thought to bind signal sequences of secretory proteins. The structure of a chemically synthesized 25-residue-long peptide corresponding to one of the proposed methionine rich amphiphilic helices of Ffh was determined in water and in aqueous trifluroethanol (TFE) solution using CD ard NMR. (omitted)

  • PDF

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Oh, Min-Kyu;Hwang, Taek-Sung;Rhee, Young-Woo;Song, Hwan-Moon;Kim, Bo-Yeol;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.455-461
    • /
    • 2006
  • In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin

  • Wang, Meng;Zhang, Dian-Cai;Wang, Shen-Tian;Li, Ming-Long
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.571-579
    • /
    • 2016
  • In this work, we prepared a panel of monoclonal anti-idiotypic antibodies to ovine prolactin (oPRL) by the hybridoma technique. Among these antibodies, one anti-idotypic antibody (designated B7) was chosen for further characterization by a series of experiments. We first demonstrated that B7 behaved as a typical $Ab2{\beta}$ based on a series of enzyme-linked immunosorbent assays. Subsequently, the results of a competitive receptor-binding assay confirmed that B7 could specifically bind to the prolactin receptor (PRLR) expressed on target cells. Finally, we examined its biological activities in CHO-PRLR and Nb2 cells and observed that B7 could activate Janus kinase 2-signal transducer and activator of transcription signalling in CHO-PRLR and Nb2 cells and induce BaF3 proliferation. The present study suggests that i) B7 can serve as a PRLR agonist or PRL mimic and has potential applications in regulating mammary gland development, milk production and maintenance of lactation in domestic animals and ii) B7 may be a biological reagent that can be used to explore the mechanism of PRLR-mediated intracellular signalling.

A Study on the Convergence Characteristics Analysis of Chaotic Dynamic Neuron (동적 카오틱 뉴런의 수렴 특성에 관한 연구)

  • Won-Woo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Biological neurons generally have chaotic characteristics for permanent or transient period. The effects of chaotic response of biological neuron have not yet been verified by using analytical methods. Even though the transient chaos of neuron could be beneficial to overcoming the local minimum problem, the permanent chaotic response gives adverse effect on optimization problems in general. To solve optimization problems, which are needed in almost all neural network applications such as pattern recognition, identification or prediction, and control, the neuron should have one stable fixed point. In this paper, the dynamic characteristics of the chaotic dynamic neuron and the condition that produces the chaotic response are analyzed, and the convergence conditions are presented.

  • PDF

Pattern Extraction of EMG Signal of Spinal Cord Injured Patients via Multiscaled Nonlinear Processing (다중스케일 비선형 처리를 통한 척수 손상 환자의 근전도 신호 패턴 추출)

  • Lee, Y. S.;Lee, J.;Kim, H. D.;Park, I. S.;Ko, H. Y.;Kim, S. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.249-257
    • /
    • 2001
  • The voluntary contracted EMG signal of spinal cord injured patients is very small because the information from central nervous system is not sufficiently transmitted to $\alpha$ motor neuron or muscle fiber. Therefore the acquisited EMG signal from needle or surface electrodes can not be identified obvious voluntary contraction pattern by muscle movement. In this paper we propose the extraction technique of voluntary muscle contraction and relaxation pattern from EMG signal of spinal cord injured patient whose EMG signal is composed of the linear sum of mo색 unit action potentials with two noise sources, additive noise assumed to be white Gaussian noise and high frequency discharge assumed to be not motor unit action potential but impulsive noise. In order to eliminate impulsive noise and additive noise from voluntary contracted EMG signal, we use the FatBear filter which is a nonarithmetic piecewise constant filter, and multiscale nonlinear wavelet denoising processing, respectively. The proposed technique is applied to the EMG signal acquisited from transverse myelitis patients to extract voluntary muscle contraction pattern.

  • PDF

Heterologous Expression of Yeast Prepro-$\alpha$-factor in Rat $GH_3$ Cells

  • Lee, Myung-Ae;Cheong, Kwang-Ho;Han, Sang-Yeol;Park, Sang-Dai
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • Yeast pheromone a-factor is a 13-amino acid peptide hormone that is synthesized as a part of a larger precursor, prepro-$\alpha$-factor, consisting of a signal peptide and a proregion of 64 amino acids. The carboxy-terminal half of the precursor contains four tandem copies of mature $\alpha$-factor. To investigate the molecular basis of intracellular sorting, proteolytic processing, and storage of the peptide hormone, yeast prepro-$\alpha$-factor precursors were heterologously expressed in rat pituitary $GH_3 cells. When cells harboring the precursor were metabolically labeled, a species of approximately 27 kD appeared inside the cells. Digestion with peptide: N-glycosidase F (PNG-F) shifted the molecular mass to a 19 kD, suggesting that the 27 kD protein was the glycosylated form as in yeast cells. The nascent polypeptide is efficiently targeted to the ER in the $GH_3 cells, where it undergoes cleavage of its signal peptide and core glycosylation to generate glycosylated pro-a-factor. To look at the post ER intracellular processing, the pulse-labelled cells were chased up to 2 hrs. The nascent propeptides disappeared from the cells at a half life of 30 min and only 10-25% of the newly synthesized, unprocessed precursors were stored intracellularly after the 2 h chase. However, about 20% of the pulse-labeled pro-$\alpha$-factor precursors were secreted into the medium in the pro-hormone form. With increasing chase time, the intracellular level of propeptide decreased, but the amount of secreted propeptide could not account for the disappearance of intracellular propeptide completely. This disappearance was insensitive to lysosomotropic agents, but was inhibited at $16^{circ}C or 20^{\circ}C$, suggesting that the turnover of the precursors was not occurring in the secretory pathway to trans Golgi network (TGN) or dependent on acidic compartments. From these results, it is concluded that a pan of these heterologous precursors may be processed at its paired dibasic sites by prohormone processing enzymes located in TGN/secretpry vesicles producing small peptides, and that the residual unprocessed precursors may be secreted into the medium rather than degraded intracellularly.

  • PDF

Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System

  • Yang, Moon Hee;Jung, Min-Suk;Lee, Min Joo;Yoo, Kyung Hyun;Yook, Yeon Joo;Park, Eun Young;Choi, Seo Hee;Suh, Young Ju;Kim, Kee-Won;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.121-130
    • /
    • 2008
  • Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.