• Title/Summary/Keyword: Biological sequence

Search Result 1,447, Processing Time 0.028 seconds

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici (고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성)

  • Lee, Jung-Bok;Shin, Jeong-Hak;Jang, Jong-Ok;Shin, Kee-Sun;Choi, Chung-Sik;Kim, Kun-Woo;Jo, Min-Sub;Jeon, Chun-Pyo;Kim, Yun-Hoi;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.227-232
    • /
    • 2008
  • Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

Genomic Analysis of Satellite RNA of Cucumber mosaic virus-Paf Related with Mild Symptoms (Cucumber mosaic virus Paf 계통의 약독 병징과 관련된 satellite RNA의 유전자 해석)

  • Sung, Mi-Young;Jung, Min-Young;Lee, Sang-Yong;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.241-247
    • /
    • 2004
  • Recently, we reported a satellite RNA (Paf-satRNA) which is encapsidated in a pepper isolate of Cucumber mosaic virus (CMV-Paf) regulated symptom attenuation of the helper virus. To characterize mild symptom domain of Paf-satRNA, a series of chimeric cDNAs of satRNAs were created by using full-length cDNA clones of Paf-satRNA and a Pep-satRNA, chlorosis-inducing satRNA in pepper plants, and analyzed for determinants of symptom attenuation. When compared the nucleotide sequences, the 3' and 5' terminal sequences of the two wild-type (wt) satRNAs contained relatively conserved sequences which are the typical to CMV satRNA. Ten bases insertions were found in PepY-satRNA, and two variable regions, 81st to 113th and 183rd to 265th from the 5'-end, were located in the middle parts of the satRNAs. To delineate the attenuated symptom-related domain for the Paf-satRNA, in vitro transcripts RNAs transcribed from the wt cDNAs and constructed chimeric cDNAs were combined with genomic RNAs, RNA1, RNA2 and RNA3, of CMV-Fny and inoculated onto Nicotiana benthamiana plants. These transcripts were fully infectious onto the N. benthamiana and infectivity was confirmed by the RT-PCR. Chimeric Paf(H/N)-satRNA and PepY(N/A)-satRNA as well as Paf-satRNA induced very mild mosaic or symptomless infection on N. benthamiana. By contrast, typical mosaic symptom and stunting of infected plants were induced when PepY-satRNA, PepY(H/N)-satRNA and Paf(N/A)-satRNA were infected to N. benthamiana. Paf-satRNA coinfected with CMV-Fny RNAs induced very mild to sympomless on pepper plants whereas PepY-satRNA-infected pepper expressed typical chlorosis mosaic symptom. Two kinds of chimeric mutants, Paf(H/N)-satRNA and PepY(N/A)-satRNA, induced mild mosaic or symptomless infection onto pepper plants, while PepY(H/N)-satRNA and Paf(N/A)-satRNA showed typical chlorosis and mosaic symptom with stunting. This results suggest that mild symptom-related domain for the Paf-satRNA was located on HpaI-NarI region.

Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp. (Bacillus spp.를 이용한 옥수수 밑둥썩음병의 생물학적 방제)

  • Han, Joon-Hee;Park, Gi-Chang;Kim, Joon-Oh;Kim, Kyoung Su
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.280-289
    • /
    • 2015
  • Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutinans and F. temperatum. A total of 1,357 bacterial strains were isolated from rhizosphere. Among them three bacterial isolates (GC02, GC07, GC08) were selected, based on antagonistic effects against Fusarium species. The isolates GC02 and GC07 were most efficient in inhibiting the mycelium growth of the pathogens. The three isolates GC02, GC07 and GC08 were identified as Bacillus methylotrophicus, B. amyloliquefaciens and B. thuringiensis using 16S rRNA sequence analysis, respectively. GC02 and GC07 bacterial suspensions were able to suppress over 80% conidial germination of the pathogens. GC02, GC07 and GC08 were capable of producing large quantities of protease enzymes, whereas the isolates GC07 and GC08 produced cellulase enzymes. The isolates GC02 and GC07 were more efficient in phosphate solubilization and siderophore production than GC08. Analysis of disease suppression revealed that GC07 was most effective in suppressing the disease development of stalk rot. It was also found that B. methylotrophicus GC02 and B. amyloliquefaciens GC07 have an ability to inhibit the growth of other plant pathogenic fungi. This study indicated B. methylotrophicus GC02 and B. amyloliquefaciens GC07 has potential for being used for the development of a biological control agent.

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52 (Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성)

  • Kwon, Joung-Ja;Lee, Jung-Bok;Kim, Beam-Soo;Lee, Eun-Ho;Kang, Kyeong-Muk;Shim, Jang-Sub;Joo, Woo-Hong;Jeon, Chun-Pyo;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.

Enhanced biological effect of fermented soy-powder milk with Lactobacillus brevis increasing in γ-aminobutyric acid and isoflavone aglycone contents (가바와 비당체 이소플라본이 증가된 Lactobacillus brevis 발효 콩-분말 두유의 생리활성 증진 효과)

  • Hwang, Chung Eun;Kim, Su Cheol;Lee, Jin Hwan;Hong, Su Young;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.245-255
    • /
    • 2018
  • The research was aimed to analyze the functional constituents (GABA and isoflavone), radical (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl) scavenging activities and enzyme (${\alpha}-glucosidase$ and lipase) inhibitory effects of soypowder milk (SPM) and fermented soy-powder milk (FSPM) with varied Lactobacillus brevis. Ten ${\gamma}-aminobutyric$ acid (GABA) producing lactic acid bacteria that showed 96-99% similarity with L. brevis, according to 16S rRNA gene sequence analysis, were isolated from fermented kimchi. The conversion rates of GABA were obtained 66.96-93.51, 63.76-84.58, and 57.05-69.75% in monosodium glutamate, gluten and soy protein, respectively. The levels of pH and glutamic acid of FSPM were found lower than those of SPM, but the acidity and GABA contents were higher. The GABA conversion rate of FSPM with BMK484 strain was attained the highest 69.97%. The contents of isoflavone glycoside ($1290.93{\mu}g/g$) was higher in SPM, but the content of isoflavone aglycone ($287.27-501.9{\mu}g/g$) was higher in FSPM. The levels of isoflavone aglycone such as daidzein, glycitein and genistein, were found as the highest 240.2, 61.24 and $200.45{\mu}g/g$, respectively, when FSPM was made with BMK484 strain. The DPPH, ABTS and hydroxyl radical scavenging and ${\alpha}-glucosidase$ and pancreatic lipase inhibitory activities of FSPM made with BMK484 strain were the relatively higher 60.31, 88.10, 61.25, 52.71, and 39.37%, respectively. Therefore, the L. brevis can be used as a material capable of simultaneously enhanced GABA and isoflavone aglycone in FSPM.

Isolation and Identification of Agarose-degrading Bacterium, Pseudoalteromonas sp. GNUM08122 (아가로오스 분해세균인 Pseudoalteromonas sp. GNUM08122 분리 및 동정)

  • Kim, Yu-Na;Jeong, Yeon-Kyu;Kim, Mu-Chan;Kim, Sung-Bae;Chang, Yong-Keun;Chi, Won-Jae;Hong, Soon-Kwang;Kim, Chang-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study's aim was to isolate microorganisms producing agarase with a high activity, with possible applications in improving the performance of the pretreatment processes for bioethanol production. Marine algaes were collected from the south coast of Korea, from which three kinds of microorganisms were isolated. After a 4-day culture of these strains at $25^{\circ}C$, crude enzymes were obtained from culture supernatant or cell-free extract by ammonium sulfate precipitation and membrane dialysis. Agarase activity was observed in these crude enzymes. Notably higher specific activity was observed in the crude enzyme obtained from the culture supernatant rather than that from the cell-free extract. This indicates that a secreted enzyme has a much greater activity than a cellular enzyme. Crude enzymes from the GNUM08122 strain were inferred to have ${\alpha}$-agarase activity because release of p-nitrophenol was observed, possibly due to the cleavage of p-nitrophenyl-${\alpha}$-D-galactopyranoside. The 16S rRNA sequence of GNUM08122 showed a close relationship to Pseudoalteromonas issachenkonii KMM 3549 (99.8%) and Pseudoalteromonas tetraodonis IMA 14160 (99.7%), which led us to assign it to the genus Pseudoalteromonas. Biochemical and physiological study revealed that this strain can grow well at $40^{\circ}C$ under a wide range of pH (pH 4~8) in high-salt conditions (10% NaCl).

Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment

  • Park, Seong-Joo;Yoon, Jerng-Chang;Shin, Kwang-Soo;Kim, Eung-Ho;Yim, Soo-Bin;Cho, Yeon-Je;Sung, Gi-Moon;Lee, Dong-Geun;Kim, Seung-Bum;Lee, Dong-Uk;Woo, Sung-Hoon;Koopman, Ben
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.

Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site. (디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성)

  • Ahn, Yeong-Hee;Jung, Byung-Gil;Sung, Nak-Chang;Lee, Young-Ok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.659-663
    • /
    • 2009
  • Bacterial stain 3Y was isolated from a site that was contaminated with diesel for more than 15 years. The strain could grow on various petroleum using hydrocarbons as the sole carbon source. The strain grew not only on aliphatic hydrocarbons but also on aromatic hydrocarbons. 3Y grew on aliphatic petroleum hydrocarbons hexane or hexadecane, and aromatic petroleum hydrocarbons BTEX, phenol, biphenyl, or phenanthrene. The strain showed aromatic ring dioxygenase and meta-cleavage dioxygenase activities as determined by tests using indole and catechol. Aromatic ring dioxygenase is involved in the initial step of biodegradation of aromatic hydrocarbons while meta-cleavage dioxygenase catalyzes the cleavage of the benzene ring. Based on a nucleotide sequence analysis of its 16S rRNA gene, 3Y belongs to the genus Sphingomonas. A phylogenetic tress was constructed based on the nucleotide sequences of closest relatives of 3Y and petroleum hydrocarbon degrading sphingomonads. 3Y was in a cluster that was different from the cluster that contained well-known sphingomonads. The results of this study suggest that 3Y has the potential to cleanup oil-contaminated sites. Further investigation is warranted to optimize conditions to degrade petroleum hydrocarbons by the strain to develop a better bioremediation strategy.

Keyhole Imaging Combined Phase Contrast MR Angiography Technique (Keyhole Imaging기법을 적용한 위상대조도 자기공명 혈관조영기법)

  • Lee, D.H.;Hong, C.P.;Han, B.S.;Lee, M.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • Phase Contrast MR Angiography(PC MRA) is excellent MRA technique for measuring the velocity of vessels in the human body. PC MRA need to at least four images for angiogram reconstruction and it caused longer scan time. Therefore, we used keyhole imaging combined PC MRA to reduce the scan time. However, keyhole imaging can lead the erroneous effects as loss of phase information or frequency discontinuous. In this study, we applied the keyhole imaging combined 2D PC MRA for improving the temporal resolution and also measured the velocity to evaluate the accuracy of phase information. We used 0.32T MRI scanner(Magfinder II, Scimedix, Korea). Using the 2D PC MRA pulse sequence, the vascular images for a human brain targeted on the Superior Sagittal Sinus(SSS) were obtained. We applied tukey window function for keyhole images to minimize the ringing artifact and erroneous factors that are induced frequency discontinuous and phase information loss. We also applied zero-padded algorithm to peripheral missing k-space lines to compare keyhole imaging results and the artifact power(AP) value was measured on the complex difference images to validate the image quality. Consider as based on our results, heavy image distortions and artifacts were shown until using at least 50% keyhole factor. Using above the 50% keyhole factors are shown well reconstructed and matched for magnitude images and velocity information measurements. In conclusion, we confirmed the image quality and velocity information of keyhole technique combined 2D PC MRA. Especially, measured velocity information through the keyhole imaging combination was similar to the velocity information of full sampled k-space image despite of frequency discontinuous and phase information loss in the keyhole imaging reconstruction process. Consequently, the keyhole imaging combined 2D PC MRA will give some clinical usefulness and advantages as improving the temporal resolution and measuring the velocity information via selecting the appropriate keyhole factor at low tesla MRI system.

Synthesis and Characterization of Tetradentate N2O2 Schiff Base Ligand and its Rare Earth Metal Complexes (사배위 N2O2 Schiff 염기 리간드와 그 희토류 금속착물의 합성 및 특성)

  • Shelke, Vinod A.;Jadhav, Sarika M.;Shankarwar, Sunil G.;Munde, chut S.;Chondhekar, Trimbak K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.436-443
    • /
    • 2011
  • The solid complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) with 4-hydroxy-3-(1-{2-(2,4-dihydroxy-benzylidene)-amino phenylimino}-ethyl)-6-methyl-pyran-2-one ($H_2$L) derived from o-phenylenediamine, 3-acetyl-6-methyl-(2H)pyran,2,4(3H)-dione (dehydroacetic acid or DHA) and 2, 4-dihydroxy benzaldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, FT-IR, $^1H$-NMR, X-ray diffraction, thermal analysis study, and screened for antimicrobial activity. The FT-IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests distorted octahedral geometry for La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) complexes. The X-ray diffraction data suggests monoclinic crystal system for La(III) and Ce(III) and orthorombic crystal system for Pr(III) and Nd(III) complexes. Thermal behavior (TG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The ligand and its metal complexes were screened for antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus Sp. and fungicidal activity against Aspergillus Niger, Trichoderma and Fusarium oxysporum.