• Title/Summary/Keyword: Biological particle

Search Result 364, Processing Time 0.038 seconds

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND OXYGEN ADMIXTURE PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, EunHa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.207-207
    • /
    • 2016
  • plasma group velocities of neon with oxygen admixture (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities outside interelectrode region are in the order of 104 m/s.The plasma ambipolar diffusion velocities are calculated to be in the order of 102 m/s. Plasma jet is generated by all fixed sinusoidal power supply, total gas flow and repetition frequency at 3 kV, 800 sccm and 40 kHz, respectively. The amount of oxygen admixture is varied from 0 to 2.75 %. By employing one dimensional convective wave packet model, the electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be in a range from 1.65 to 1.95 eV.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND ARGON PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.156.1-156.1
    • /
    • 2015
  • Neon and argon plasma group velocities (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream region are in the order of 104-105 m/s. The plasma ambipolar diffusion velocities are calculated to be in the order of 101-102 m/s. Plasma jet is generated by sinusoidal power supply in varying voltages from 1 to 4 kV at repetition frequency of 40 kHz. By employing one dimensional convective wave packet model, the neon and argon electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be 1.95 and 1.18 eV, respectively.

  • PDF

Effect of particle migration on the heat transfer of nanofluid

  • Kang, Hyun-Uk;Kim, Wun-Gwi;Kim, Sung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.99-107
    • /
    • 2007
  • A nanofluid is a mixture of solid nanoparticles and a common base fluid. Nanofluids have shown great potential in improving the heat transfer properties of liquids. However, previous studies on the characteristics of nanofluids did not adequately explain the enhancement of heat transfer. This study examined the distribution of particles in a fluid and compared the mechanism for the enhancement of heat transfer in a nanofluid with that in a general microparticle suspension. A theoretical model was formulated with shear-induced particle migration, viscosity-induced particle migration, particle migration by Brownian motion, as well as the inertial migration of particles. The results of the simulation showed that there was no significant particle migration, with no change in particle concentration in the radial direction. A uniform particle concentration is very important in the heat transfer of a nanofluid. As the particle concentration and effective thermal conductivity at the wall region is lower than that of the bulk fluid, due to particle migration to the center of a microfluid, the addition of microparticles in a fluid does not affect the heat transfer properties of that fluid. However, in a nanofluid, particle migration to the center occurs quite slowly, and the particle migration flux is very small. Therefore, the effective thermal conductivity at the wall region increases with increasing addition of nanoparticles. This may be one reason why a nanofluid shows a good convective heat transfer performance.

Basics of particle therapy II: relative biological effectiveness

  • Choi, Jin-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society.

Studies on Manufacture of Hanji(Korean Paper) Sludge·Wood Particle Composite II. Mechanical Properties of Hanji(Korean Paper) Sludge·Wood Particle Composite (한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 제조연구(製造研究) II. 한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 기계적(機械的) 성질(性質))

  • Lee, Phil-Woo;Lee, Hak-Lae;Son, Jungil;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.121-127
    • /
    • 2002
  • This research was carried out to develop the Hanji(Korean paper) sludge·wood particle composite utilizing the waste sludges occurring from the making process of Hanji(Korean paper). At the research, four mixing ratios of white or black sludge to wood particle(10:90, 20:80, 30:70 and 40:60), three types of the resin adhesives(PMDI, urea and phenol resin) and three levels of the densities(0.60, 0.75 and 0.90) were designed to investigate the mechanical properties of Hanji(Korean paper) sludge·wood particle composite. In the white and black sludge·wood particle composites, bending properties(MOR, MOE) showed the decreasing tendency according to the increase of sludge additive, but it was clearly increased with the increase of specific gravity. Also tensile strength had the same tendency as in these bending properties. The internal bond strength of white sludge·wood particle composite had no tendency, but that of black sludge·wood particle composite was decreased as an increase of Hanji sludge additive.

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF

Particle Tracking Microrheology and its application to dilute viscoelastic materials (입자추적 미세유변학의 묽은 점탄성 물질에 대한 응용)

  • Yim Yoon-Jae;Lee Sung-Sik;Ahn Kyung-Hyun;Lee Seung-Jong
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.61-64
    • /
    • 2006
  • Soft materials, such as polymer solutions, gels and filamentous protein materials in cells, show complicated behavior due to their complex structures and dynamics with multiple characteristic time and length scales. Several complementary techniques have been developed to measure viscoelastic of soft materials. Especially, particle tracking microrheology, using the Brownian motion of particles in a medium to get rheological properties, has recently been improved both theoretically and experimentally. Compared to other conventional methods, video particle tracking microrheology has some advantages such as small sample volume, detecting spatial variation of local rheological properties, and less damage to sample materials. With these advantages, microrheology is more suitable to measure the properties of complex materials than other mechanical rheometries.

  • PDF

The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode (405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능)

  • Jeong, Young-Su;Chong, Eugene;Lee, Jong-Min;Choi, Kibong
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

Studies on Manufacture of Hanji(Korean Paper) Sludge·Wood Particle Composite - I. Physical Properties of Hanji(Korean Paper)Sludge·Wood Particle Composite (한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 제조연구(製造硏究) - I. 한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 물리적(物理的) 성질(性質))

  • Lee, Phil-Woo;Lee, Hak-Lae;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2001
  • This research was carried out to develop the Hanji(Korean paper) sludge wood particle composite utilizing the waste sludges occurring from the making process of Hanji(Korean paper). In the research, four mixing ratios of white or black sludge to wood particle(10:90, 20:80, 30:70, and 40:60), three types of the resin adhesives(PMDI, urea and phenol resin) and three levels of the densities(0.60, 0.75 and 0.90) were designed to investigate the physical properties of Hanji(Korean paper) sludge wood particle composite. The linear expansion of Hanji(Korean paper) sludge wood particle composite was not always increased, compared to control boards. For thickness swelling, PMDI-bonded composites had the lowest value, and thickness swelling of composite was generally decreased with the increase of Hanji sludge. The water absorption of white sludge wood particle composite had no tendency, hut that of black sludge wood particle composite was decreased with an increase of mixing ratio of Hanji sludge.

  • PDF