• Title/Summary/Keyword: Biological mechanism

Search Result 1,496, Processing Time 0.022 seconds

Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity

  • Kim, Hyung Sik;Park, Min Young;Lee, Sung Kyun;Park, Joon Seong;Lee, Ha Young;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.418-423
    • /
    • 2018
  • Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, $Lin^-c-kit^+Sca-1^-$ cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.

Lin28 and Imp are Required for Stability of Bowl Transcripts in Hub Cells of the Drosophila Testis

  • To, Van;Kim, Hyun Ju;Jang, Wijeong;Sreejith, Perinthottathil;Kim, Changsoo
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.313-319
    • /
    • 2021
  • Hub cells comprise a niche for germline stem cells and cyst stem cells in the Drosophila testis. Hub cells arise from common somatic gonadal precursors in embryos, but the mechanism of their specification is still poorly understood. Here we find that RNA binding proteins Lin28 and Imp mediate transcript stability of Bowl, a known hub specification factor; Bowl transcripts were reduced in the testis of Lin28 and Imp mutants, and also when RNA-mediated interference against Lin28 or Imp was expressed in hub cells. In tissue culture Luciferase assays involving the Bowl 3'UTR, stability of Luc reporter transcripts depended on the Bowl 3'UTR and required Lin28 and Imp. Our findings suggest that proper Bowl function during hub cell specification requires Lin28 and Imp in the testis hub cells.

A Self-contained Wall Climbing Robot with Closed Link Mechanism

  • Park, Hyoukryeol;Park, Jaejun;Taehun Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.573-581
    • /
    • 2004
  • A self-contained wall climbing robot, called MRWALLSPECT (Multi-functional Robot for WALL inSPECTion) II, is developed. It is designed for scanning external surfaces of gas or oil tanks with small curvature in order to find defects. The robot contains all the components for navigation in itself without any external tether cable. Although it takes the basic structure of the sliding body mechanism, the robot has its original characteristic features in the kinematic design with closed link mechanism, which is enabled by adopting a simple and robust gait pattern mimicking a biological system. By employing the proposed link mechanism, the number of actuators is reduced and high force-to-weight ratio is achieved. This paper describes its mechanism design and the overall features including hardware and software components. Also, the preliminary results of experiments are given for evaluating its performances.

New Computer Retina Model Reflecting the Mechanism of Amacrine Cell (무축삭세포의 기전을 반영한 새로운 계산론적 망막 모델)

  • 김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.331-338
    • /
    • 2001
  • In this paper, we have proposed a new computer retina model reflecting the mechanism of transient amacrine cell on the basis of a conventional computer retina model to understand mechanism of visual information processing. The conventional computer retina model contained most of mechanism for other retina models and it was verified with the physiological data. However, we found that a conventional computer retina model doesn't have the mechanism of amacrine cell that was likely to respond to moving stimulus. In proposed model, therefore, a conventional computer model that considered from photoreceptors to bipolar cells and a new computer model that considered for transient amacrine cell and ganglion cell was combined. As we compared the physiological data with the results of computer simulation of transient amacrine cell about fixed stimulus and moving stimulus, we confirmed that the proposed new computer retina model was normally operated.

  • PDF

Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression

  • Yi, Sun-Ju;Kim, Kyunghwan
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.211-218
    • /
    • 2018
  • Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.

Herbicidal action mechanism of chlorsulfuron (Acetolactate synthase 저해 제초제인 chlorsulfuron의 작용기작)

  • Kim, Song-Mun;Kim, Yong-Ho;Hur, Jang-Hyun;Han, Dae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.1-20
    • /
    • 1998
  • Chlorsulfuron, one of sulfonylurea herbicides acts through inhibition of acetolactate syuthase (EC 4.1.3.18; ALS, also known as acetohydroxyacid synthase) in the branched-chain amino acid biosynthesis process. After chlorsulfuron-ALS interaction, many physiological and metabolic disruptions occur in plants. However, it is not clear how this chlorsulfuron-ALS interaction affects those physiological and metabolic processes and how this interaction leads subsequently to plant death. Several researchers suggested that the death of chlorsulfuron-treated plants might be due to a shortage of the branched-chain amino acids, an accumulation of toxic metabolites, and/or a depletion of photoassimilates. It remains as a mystery presently, however, if such changes result in the plant death. In this review, we discussed how the chlorsulfuran-ALS interaction leads to physiological and metabolic disruptions in plants.

  • PDF

Lipid Peroxidation and Its Nutritional Significance (지방질의 과산화와 영양)

  • 최홍식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.867-878
    • /
    • 1994
  • A general overview of the lipid peroxidation and its nutritional significance are presented ,with emphasis on the reaction mechaisms, peroxidized products, further interaction and nutritional/biological deterioration in a series of oxidative process. Overall mechanism with various factors and elements for initiation , propagation and termination of free radical reaction is reviewed and the primary /secondary products of peroxidized lipids are defined. Since these products are potentially reactive substances that can cause deterioration of proteins /amino acids and vitamins (carotene, tocopherols and ascorbic acid etc), mechanism and actual damages of their deterioration in some foods and biological models are outlined. Especially , chemical changes caused by interaction of peroxidized products (related hydroperoxides, radicals and malonaldehye etc) and protein are emphasized here. And also, the detailed mechanisms on radical scavenging of the these vitamins which are the most prominent natural antioxidants are presented . Additionally , the possible roles of peroxidicaed lipids and their secondary products in the process of aging an carcinogenesis are briefly discussed . However, it is important to not that more detailed and integrated studies on the reaction kinetics, energetics of peroxidation, their decomposed products , biochemical interaction potential damaging/aging / carcinogenic effects, protection from their oxidative spoilage and novel antioxidants in food and heterogeneous biological systems will be essential in order to assessing the implication of lipid peroxidation to human nutrition and health.

  • PDF

Antitumor and Apoptosis Induction Effects of Paeonol on Mice Bearing EMT6 Breast Carcinoma

  • Ou, Yetao;Li, Qingwang;Wang, Jianjie;Li, Kun;Zhou, Shaobo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • Paeonol is a major phenolic micromolecular component of Moutan cortex Radicis, a traditional Chinese Medicine. It has shown antitumor effects in previous studies; however, the underlying mechanisms remain unknown. This study investigated the mechanism by giving treatments of placebo, cyclophosphamide, paeonol of 150 and 300 mg/kg to 4 groups of mice bearing EMT6 breast cancer. Apoptosis in tumor cells were confirmed by morphology analysis, including hematoxylin, eosin staining and TUNEL staining. The results showed that the weight of EMT6 breast tumor was significantly reduced in the groups treated with both 150 and 300 mg/kg of paeonol. Immunohistochemical and Western blot results showed that the expression of Bcl-2 was down-regulated while the expression of Bax, caspase 8 and caspase 3 was up-regulated respectively. These results suggest that paeonol exhibits antitumor effects and the mechanism of the inhibition is via induction of apoptosis, regulation of Bcl-2 and Bax expression, and activation of caspase 8 and caspase 3.

MATHEMATICAL MODELING OF FERTILIZER IMPACTION USING $RecurDyn^{\textregistered}$

  • J. Y. Rhee;J. S. Hwang;Kim, H. J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.430-437
    • /
    • 2000
  • Fertilizer impaction mechanism was simulated using a commercial program RecurDyn$^{(R)}$ a dynamic program that could handle contact problems. Even if there had been numerous papers on modeling of fertilizer applicator, the performance predictions were not satisfactory due to simplification in modeling. The most significant simplification was assumption of fertilizer particles as a solid particle. The assumption would eliminate rotation of fertilizer particles during the impaction mechanism. However, impaction of rotating body would be different from that of a solid particle. This paper introduced how the impaction was modeled using RecurDyn$^{(R)}$. In order to simulate, restitution coefficient and contact time was measured. A stiffness coefficient and a damping coefficient of a fertilizer was theoretically estimated using the measured data. Validity of the simulation result was not proved yet, but judged to be promising.ged to be promising.ing.

  • PDF

Adsorption Mechanism of Radioactive Cesium by Prussian Blue (프러시안 블루(PB)의 방사성 세슘 흡착 메커니즘 연구)

  • Jang, Sung-Chan;Kim, Jun-Yeong;Huh, Yun Suk;Roh, Changhyun
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.127-130
    • /
    • 2015
  • Since the accident at the Fukushima Daiichi power plant, Prussian blue (PB) has attracted increasing attention as a material for use in decontaminating the environment. We have focused the fundamental mechanism of specific $Cs^+$ adsorption into PB in order to develop high-performance PB-based $Cs^+$ adsorbents. The ability of PB to adsorb Cs varies considerably according to its origin such as what synthesis method was used, and under what conditions the PB was prepared. It has been commonly accepted that the exclusive abilities of PB to adsorb hydrated $Cs^+$ ions are caused by regular lattice spaces surrounded by cyanido-bridged metals. $Cs^+$ ions are trapped by simple physical adsorption in the regular lattice spaces of PB. $Cs^+$ ions are exclusively trapped by chemical adsorption via the hydrophilic lattice defect sites with proton-exchange from the coordination water. Prussian blue are believed to hold great promise for the clean-up of $^{137}Cs$ contaminated water around nuclear facilities and/or after nuclear accidents.