• Title/Summary/Keyword: Biological mechanism

Search Result 1,501, Processing Time 0.034 seconds

Oxidative Stress in C100 Cells Induced by Combined Treatmentof Benzo(a)pyrene and/or 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)

  • Bae, Mi-Ok;Choi, Kyung-Ho;Lee, Hu-Jang;Kim, Hyun-Woo;Kim, Jun-Sung;Hwang, Soon-Kyung;Park, Jin-Hong;Cho, Hyun-Sun;Cho, Myung-Haing
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • When an organism is exposed to various toxicants chronically, reactive oxygen species(ROS) are accumulated and eventually result in several biological effects from gene expression to cell death. In the present study we investigated the oxidative damage of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin(TCDD) and/or benzo(a)pyrene (B(a)P) in C100 cells. C100 cells treated with TCDD(30 nM) and B(a)P($3{\mu}M$) underwent diverse oxidative stress as determined through thiobarbituric acid-reactive substances(TBARS) formation, DNA fragmentation, DNA single strand break(SSB) assay, immunohistochemical staining of 8-hydroxy-2'-deoxyguanosine(8-OHdG), and mRNA expressions of antioxidant enzymatic genes such as Cu/Zn-SOD gene, GPx(glutathione peroxidase 5) gene, and catalase gene. Lipid peroxidation in C100 cells was determined through measuing the formation of TBARS. For theat, the cells were pretreated with TCDD(30 nM) and/or B(a)P($3{\mu}M$) for 0.5, 1, 2 and 4 days. TBARS formation was increased in TCDD(30 nM) and B(a)P($3{\mu}M$) and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) and positive control treatment groups comparing to the controls. Mixture treatment induced more DNA fragmentation than the single treatment group at day 6. Also, SSB in all treatment groups was clearly observed when compared with the negative control group. As with the expression of antioxidant enzyme, GPx 5mRNA, B(a)P alone and mixture($30nM\;TCDD+3{\mu}M\;B(a)P$) treatment were higher comparing to those of the negative control and TCDD treatment groups. Our results suggest that exposure of C100 cells to mixture of TCDD and B(a)P leads to significant oxidative damage comparing to the exposures to the individual chemicals. Mechanisms of action are discussed. Additional studies are needed to elucidate the detailed mechanism of mixture-induced toxicity.

Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System (한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성)

  • Jae-Lim Lim;Lee, Kyung-Hyuk;Kim, Seong-Su;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.

Calmodulin of Olive Flounder Paralichthys olivaceus : Cloning and Expression Analysis

  • Hong, Gyeong-Eun;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Young-Ok;Kim, Woo-Jin;Lee, Sang-Jun;Choi, Tae-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.234-237
    • /
    • 2007
  • Calmodulin (CaM) is a $Ca^{2+}$-binding protein essential for biological functions mediated through $Ca^{2+}$-dependent mechanism. A cDNA clone for CaM was isolated from a cDNA library of olive flounder Paralichthys olivaceus. The CaM cDNA concists of 782 bp and encodes a polypeptide of 149 amino acids with four $Ca^{2+}$-binding motifs EF-hands (EF-I, EF-II, EF-III, and EF-IV). The deduced amino acid sequence of CaM shows 97-100% amino acid sequence identity to other CaM sequences. Semi-quantitative PCR analysis revealed that the CaM transcription was began during early development and the CaM mRNA is expressed highly in brain and intestine, and moderately in kidney, gill, and eye of healthy olive flounder. Taken together, CaM may be necessary for early olive flounder development and that it may have a part in homeostasis.

  • PDF

Apoptotic Cell Death of Human Leukemia U937 Cells by Essential Oil purified from Schisandrae Semen (오미자 종자 정유에 의한 인체백혈병 U937 세포의 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.249-255
    • /
    • 2015
  • Schisandrae fructus [Schizandra chinensis (Turcz.) Baillon] is a medicinal herb widely used for treating various inflammatory and immune diseases in East Asian countries. The Schisandrae Semen essential oil (SSeo) from this plant has pharmacological activities, including antioxidant, antimicrobial, and antitumoral activities. Nevertheless, the biological activities and underlying molecular mechanisms of the potential anti-cancer effects of this oil remain unclear. In the present study, we investigated the potential inhibition of apoptosis signaling pathways by SSeo in human leukemia U937 cells and evaluated the underlying molecular mechanism. Exposure to SSeo resulted in a concentration-dependent growth inhibition due to apoptosis, which was verified by DNA fragmentation, the presence of apoptotic bodies, and an increase in the sub-G1 ratio. Induction of apoptotic cell death by SSeo was correlated with the down-regulation of members of the inhibitor of apoptosis protein (IAP) family (including X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and surviving) and anti-apoptotic Bcl-2, and with up-regulation of death receptor (DR) 4 and DR5, depending on dosage. SSeo treatment also induced Bid truncation, mitochondrial dysfunction, proteolytic activation of caspase-3, -8 and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase. Taken together, these findings suggest that SSeo may be a potential chemotherapeutic agent for use in the control of human leukemia cells. Further studies are needed to identify its active compounds.

Isolation and Characterization of Plant Pathogen that Cause Soft Rot Disease in Napa Cabbage (배추무름병 원인균 분리 및 특성 연구)

  • Kwon, Young-Hee;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1177-1182
    • /
    • 2009
  • In order to establish in vitro infection model for research of plant pathogen based on tissue softening disease in napa cabbage, eighty independent bacterial strains were isolated from the softened napa cabbage tissues. Eight bacterial isolates were primarily screened with the generation of reproducible tissue softening disease to fresh napa cabbages within 24${\sim}$48 hours after inoculation. Through various microbiological biochemical and morphological examinations, three Gram (-) isolates which harbor independent biological properties were finally chosen, and named as RBI, RB2 and RB6. Collective results obtained from API 20E test and analyses of VITEK 2 COMPACT and nucleotide sequences of 165 rRNA of each isolate proposed that isolates RBI and RB2 are close to the Erwinia carotovora subsp. odorifera, and RB6 is close to the Erwinia carotovora subsp. carotovora. These isolates grew optimally at $30^{\circ}C$ with neutral pH culture condition. The isolates caused softening tissue disease with dose-dependent manner regardless of pre-surface damages of napa cabbage. Minimum dose to cause soft rot disease for RBI, RB2 or RB6 were $8.0{\times}10^8$ CFU/mt $10^9$ CFU/ml or $4.7{\times}10^6$ CFU/ml respectively. These isolates caused tissue softening disease to eggplant, paprika and napa cabbage out of 14 different tested vegetables, indicating that these isolates damages specific plant tissues. The bacterial isolates obtained in this research and in vitro plant infection model will be adapted in the understanding of the mechanism of pathogenesis by plant pathogen.

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

The Improved Antigen-binding Activity of Biosimilar Remicade ScFv Antibodies by Fusion of the Leucine Zipper Domain (Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선)

  • Kim, Jin-Kyoo;Kim, Tae Hwan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.1012-1020
    • /
    • 2020
  • Remicade is a therapeutic biosimilar natural antibody in which the mouse variable domain has been linked to the human constant domain. It is a chimeric monoclonal antibody specific to tumor necrosis factor-alpha (TNF-α) and has been developed for the treatment of rheumatoid arthritis. To investigate the biological activity of the Remicade antibody, we carried out a bioinformatics study using a protein data bank to characterize the TNF-α antigen binding mechanism of the Remicade natural antibody. Because the production of the Remicade antibody is often limited by genetic instability of the natural antibody-producing cell, we generated a Remicade single-chain variable domain fragment antibody (Remicade) in which a heavy chain variable domain (VH) is joined with a light chain variable domain (VL) by a polypeptide linker. Furthermore, Remicade was fused to a leucine zipper (RemicadeScZip) for higher production and higher antigen-binding activity than Remicade. The Remicade and Remicade ScZip were expressed in Escherichia coli and purified by a Ni+-NTA-agarose column. As expected, the purified proteins had migrated as 28.80 kDa and 33.96 kDa in sodium dodecyl sulfate-polyacrylamide electrophoresis. The TNF-α antigen binding activity of Remicade was not observed by ELISA and western blot. In contrast, RemicadeScZip showed antigen-binding activity. Additional bio-layer interferometry analysis confirmed the antigen-binding activity of RemicadeScZip, suggesting that the leucine zipper stabilized the folding of RemicadeScZip in a denatured condition and improved the TNF-α antigenbinding activity.

Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

  • Ryu, Jinhyun;Yoon, Nal Ae;Seong, Hyemin;Jeong, Joo Yeon;Kang, Seokmin;Park, Nammi;Choi, Jungil;Lee, Dong Hoon;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Park, Jae-Yong;Park, Jeong Woo;Kang, Sang Soo
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.991-997
    • /
    • 2015
  • Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of ARE-scontaining mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4'-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetraprolin (TTP). Res increased TTP expression in U87MG human glioma cells. Res-induced TTP destabilized the urokinase plasminogen activator and urokinase plasminogen activator receptor mRNAs by binding to the ARE regions containing the 3' untranslated regions of their mRNAs. Furthermore, TTP induced by Res suppressed cell growth and induced apoptosis in the human glioma cells. Because of its regulation of TTP expression, these findings suggest that the bioactive dietary compound Res can be used as a novel anti-cancer agent for the treatment of human malignant gliomas.

Anti-Inflammatory Effect of Sedum takesimense Nakai Water Extract in RAW 264.7 Cells (섬기린초 물 추출물의 마우스 대식세포에서 항염증 효능)

  • Jang, Ji Hun;Jung, Ho Kyung;Ko, Jae Hyung;Sim, Mi Ok;Woo, Kyeong Wan;Kim, Tae Muk;Lee, Ki Ho;Ahn, Byeong Kwan;Cho, Hyun Woo;Cho, Jung Hee;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.228-236
    • /
    • 2016
  • Background: Sedum takesimense Nakai has been used as folk medicine in Korea. The present study aimed to determine the biological activity of S. takesimense by investigating the anti-inflammatory effects of S. takesimense water extract (SKLC) on the lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Methods and Results: Cytotoxicity of SKLC on RAW 264.7 cells was determinded by performing MTS assay was found to have no cytotoxic effect on RAW 264.7 cells at a concentration range of $62-500{\mu}g/m{\ell}$. Further, pretreatment of SKLC inhibited lipopolysaccharide-induced nitric oxide (NO) production in a dose-dependent manner. To determined the inhibitory mechanisms of SKLC on inflammatory mediators, we assessed the inducible nitric oxide synthase (iNOS) and cyclooxygnease-2 (COX-2) pathways. The activities of these pathways were decreased in a dose-dependent manner by SKLC. The production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6 were also reduced. Conclusions: These results suggest that the down regulation of iNOS, COX-2, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 expression by SKLC are mediated by the down regulation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, a transcription factor necessary for pro-inflammatory mediators. This might be the mechanism underlying the anti-inflammatory effects of SKLC.

Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus Between Suspended-Growth and Attached-Growth Biological Processes (부유 및 부착성장 미생물을 이용하는 공정의 유기물, 질소 및 인 제거 특성 비교)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • This study was initiated to evaluate efficiencies of suspenced-growth processes(CAS; Conventional Activated Sludge, MLE; Modified Ludzack-Ettinger) and hybrid process(Modified-Dephanox) on removal of organic matter(C), nitrogen(N) and phosphorus(P) in municipal wastewater. M-Dephanox process was designed to improve the performance of Dephanox process on denitrification efficiency. As the results, removal efficiencies of total chemical oxygen demand(TCOD), total nitrogen(T-N) and total phosphorus(T-P) in M-Dephanox process, which is hybrid process, were 12,3, 18.6 and 28.2% higher than those in MLE, which is suspended-growth process. The better removal efficiencies of TCOD, T-N and T-P in M-Dephanox than those in MLE result that M-Dephanox is not only hybrid or multi-sludge process but also process using biosorption mechanism which is possible to use organics in denitrification, effectively. Ammonia removal efficiency in nitrification reactor of M-Dephanox was 96.7% at short hydraulic retention time(HRT) of 2 hr which was 3 hr more short HRT than that(HRT 5 hr) reported in other related papers. This indicates that M-Dephanox process can reduce HRT of whole process.