• Title/Summary/Keyword: Biological enzymes

Search Result 776, Processing Time 0.027 seconds

Changes in Structural and Functional Responses of Bacterial Communities under Different Levels of Long-Term Compost Application in Paddy Soils

  • Samaddar, Sandipan;Han, Gwang Hyun;Chauhan, Puneet Singh;Chatterjee, Poulami;Jeon, Sunyoung;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.292-296
    • /
    • 2019
  • Soils amended for long-term with high levels of compost demonstrated greater abundance of bacterial members of the phylum Bacteroidetes whereas a decreasing trend in the relative abundance of phylum Acidobacteria was noted with increasing levels of compost. Metabolic profiles predicted by PICRUSt demonstrated differences in functional responses of the bacterial community according to the treatments. Soils amended with lower compost levels were characterized by abundance of genes encoding enzymes contributing to membrane transport and cell growth whereas genes encoding enzymes related to protein folding and transcription were enriched in soils amended with high levels of compost. Thus, the results of the current study provide extensive evidence of the influence of different compost levels on bacterial diversity and community structure in paddy soils.

Biochemistry, Molecular Biology, and Metabolic Engineering of Benzylisoquinoline Alkaloid Biosynthesis

  • Peter J. Facchini;Park, Sang-Un;David A. Bird;Nailish Samanani
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2000
  • Benzylisoquinoline alkaloids are a diverse group of natural products that include many pharmacologically active compounds produced in a limited number of plant families. Despite their complexity, intensive biochemical research has extended our knowledge of the chemistry and enzymology of many important benzylisoquinoline alkaloid pathways, such as those leading to the analgesic drugs morphine and codeine, and the antibiotics sanguinarine and berberine. The use of cultured plant cells as an experimental system has facilitated the identification and characterization of more than 30 benzylisoquinoline alkaloid biosynthetic enzymes, and the molecular cloning of the genes that encode at least 8 of these enzymes. The recent expansion of biochemical and molecular technologies has creat-ed unique opportunities to dissect the mechanisms involved in the regulation of benzylisoquinoline alkaloid biosynthesis in plants. Research has suggested that product accumulation is controlled by the developmental and inducible regulation of several benzylisoquinoline alkaloid biosynthetic genes, and by the subcellular compartmentation of biosynthetic enzymes and the intracellular localization and trafficking of pathway intermediates. In this paper, we review our current understanding of the biochemistry, cell biology, and molecular regulation of benzylisoquinoline alkaloid biosynthesis in plants. We also summarize our own research activities, especially those related to the establishment of protocols for the genetic transformation of benzylisoquinoline alkaloid-producing species, and the development of metabolic engineering strategies in these plants.

  • PDF

Characteristics of Commercial Celluloytic Enzymes (상업용 목질섬유소 분해 효소의 특성)

  • Kim, Young-Yuk;Kim, Chul-Hyun;Park, Soung-Bae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2004
  • It is very difficult to compare directly the research results of enzymatic process in pulp and paper industry because commercial enzymes have diversity in its property. The chemical and biological properties of commercial enzymes were Investigated to help comparison of various commercial enzymes each other. In most case, the solid content of liquid enzymes was about 20%. The higher protein content in enzyme product does not mean the higher enzyme activity. Enzymes for paper process should selected by basis of enzyme activity, not by price of enzyme products. The chemical composition of fiber was not so much change with enzyme treatment. The enzymatic hydrolysis of fiber might negligible in paper process.

Effect of Propolis on the Activity of Antioxidant Enzymes in Rat Liver Irradiated by X-ray

  • Lee, Ji-Hoon;Ji, Tae-Jeong;Seo, Eul-Won
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.427-433
    • /
    • 2006
  • We investigated the effect of propolis on the activity of antioxidant enzymes in rat liver exposed by X-ray irradiation. The dosage of propolis showed the effect of lowering the concentration of superoxide anion in irradiated rat liver, suggesting that propolis has a significant role to remove superoxide anion as an antioxidant and/or by activating the antioxidant enzyme. The activities of superoxide dismutase (SOD) and glutathione reductase (GR), disturbed by X-ray irradiation, were restored in 30 days to normal status in the group which dosed propolis before X-ray irradiation. Interestingly, catalase (CAT) and glutathione peroxidase (GPOX) activities were highly increased with feeding propolis to rat compared to untreated group, whereas glutathione s-transferase (GST) activity was little affected. Taken together, it suggests that the propolis has a protective role in the rat liver cells against X-ray irradiation by increasing and recovering the activities of antioxidant enzymes.

  • PDF

A Simple Method for Determining Activity of Milk Clotting Enzymes (응유효소의 간편한 역가측정법)

  • Shin, H.K.;Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.3
    • /
    • pp.109-113
    • /
    • 1978
  • The process of milk clotting by enzymes was confirmed to be consisted of two distinct stages: an enzymic coagulation stage followed by a nonenzymic clotting stage. The endpoint of the enzymic stage was determined simply by measuring flow distance of milk-enzyme system in a regular test tube being laid down to five degree slope after the reaction. By measuring the time elapsed during the enzymic stage a new method of evaluating the power of milk clotting enzymes was proposed.

  • PDF

Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg

  • Choi, Jun Young;Kim, Sun Chang;Lee, Pyung Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.237-243
    • /
    • 2020
  • A novel psychrotolerant Psychrobacillus strain PB01, isolated from an Antarctic iceberg, was comparatively analyzed with five related strains. The complete genome of strain PB01 consists of a single circular chromosome (4.3 Mb) and a plasmid (19 Kb). As potential low-temperature adaptation strategies, strain PB01 has four genes encoding cold-shock proteins, two genes encoding DEAD-box RNA helicases, and eight genes encoding transporters for glycine betaine, which can serve as a cryoprotectant, on the genome. The pan-genome structure of the six Psychrobacillus strains suggests that strain PB01 might have evolved to adapt to extreme environments by changing its genome content to gain higher capacity for DNA repair, translation, and membrane transport. Notably, strain PB01 possesses a complete TCA cycle consisting of eight enzymes as well as three additional Helicobacter pylori-type enzymes: ferredoxin-dependent 2-oxoglutarate synthase, succinyl-CoA/acetoacetyl-CoA transferase, and malate/quinone oxidoreductase. The co-existence of the genes for TCA cycle enzymes has also been identified in the other five Psychrobacillus strains.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Biological Potential of Novel Specific Casein-Derived Peptides

  • Kim, Da Young;Yoo, Jung Sik;Cho, Yoon Ah;Yoon, Ho Sik;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.36-50
    • /
    • 2021
  • This study aimed to evaluate the biological potential of functional food, i.e., specific peptides obtained from the hydrolysis of milk protein, by assessing their antioxidant and antibacterial properties. For the preparation of casein hydrolysates, commercial enzymes were added to 10% casein solution in a 1:200 (w/v) ratio, and samples were collected each hour. Based on the assessment of the degree of hydrolysis (DH) of casein hydrolysates, it was observed that the concentration of all enzymatic hydrolysates increased rapidly from 30 to 40 minutes. However, no change was observed in their concentrations after 150 minutes. Protamex® and Neutrase® exhibited the highest DH when compared to other enzymes. Furthermore, SDS-PAGE was performed for analyzing the proteolytic pattern of each enzyme, except for Flavourzyme®, and peptides in the size range of 20-25 kDa were identified. Subsequently, peptides produced by two enzymes were isolated using a preparative liquid chromatography system. Overall, NF3, NF4, PF5, and PF6 showed higher antioxidant potential than other peptide fractions. Moreover, NF7 and PF3 exhibited the highest antibacterial activity. In this study, we evaluated the biological potential of novel casein-derived peptides that may find application in the food and healthcare industry.