DOI QR코드

DOI QR Code

Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg

  • Choi, Jun Young (Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University) ;
  • Kim, Sun Chang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Pyung Cheon (Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University)
  • Received : 2019.09.05
  • Accepted : 2019.12.01
  • Published : 2020.02.28

Abstract

A novel psychrotolerant Psychrobacillus strain PB01, isolated from an Antarctic iceberg, was comparatively analyzed with five related strains. The complete genome of strain PB01 consists of a single circular chromosome (4.3 Mb) and a plasmid (19 Kb). As potential low-temperature adaptation strategies, strain PB01 has four genes encoding cold-shock proteins, two genes encoding DEAD-box RNA helicases, and eight genes encoding transporters for glycine betaine, which can serve as a cryoprotectant, on the genome. The pan-genome structure of the six Psychrobacillus strains suggests that strain PB01 might have evolved to adapt to extreme environments by changing its genome content to gain higher capacity for DNA repair, translation, and membrane transport. Notably, strain PB01 possesses a complete TCA cycle consisting of eight enzymes as well as three additional Helicobacter pylori-type enzymes: ferredoxin-dependent 2-oxoglutarate synthase, succinyl-CoA/acetoacetyl-CoA transferase, and malate/quinone oxidoreductase. The co-existence of the genes for TCA cycle enzymes has also been identified in the other five Psychrobacillus strains.

Keywords

References

  1. DasSarma P, DasSarma S. 2018. Survival of microbes in Earth's stratosphere. Curr. Opin. Microbiol. 43: 24-30. https://doi.org/10.1016/j.mib.2017.11.002
  2. Krishnamurthi S, Ruckmani A., Pukall R, Chakrabarti T. 2010. Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst. Appl. Microbiol. 33: 367-373. https://doi.org/10.1016/j.syapm.2010.06.003
  3. Abd El-Rahman, HA, Fritze D, Sproer C, Claus D. 2002. Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans s p. n ov., which c ontain ornithine in their cell walls. Int. J. Syst. Evol. Microbiol. 52: 2127-2133. https://doi.org/10.1099/ijs.0.01665-0
  4. Larkin, J. M., Stokes, J. L. 1967. Taxonomy of psychrophilic strains of Bacillus. J. Bacteriol. 94: 889-895. https://doi.org/10.1128/jb.94.4.889-895.1967
  5. Pham V H , Jeong SW, Kim J . 2015. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int .J. Syst. Evol. Microbiol. 65: 3046-3052. https://doi.org/10.1099/ijs.0.000375
  6. Shen Y , Fu Y, Yu Y, Zhao J, Li J, Li Y, et al. 2017. Psychrobacillus lasiicapitis sp. nov., isolated from the head of an ant (Lasius fuliginosus). Int. J. System. Evol. Microbiol. 67: 4462-4467. https://doi.org/10.1099/ijsem.0.002315
  7. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736. https://doi.org/10.1101/gr.215087.116
  8. Hunt M., Silva ND, Otto TD, Parkhill J, Keane JA., Harris SR. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16: 294. https://doi.org/10.1186/s13059-015-0849-0
  9. Aziz RK., Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. doi: 10.1186/1471-2164-9-75.
  10. Lowe, TM., Eddy, SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. https://doi.org/10.1093/nar/25.5.0955
  11. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108. https://doi.org/10.1093/nar/gkm160
  12. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109
  13. Darling A E, Mau B , Blattner FR, Perna N T. 2 004. M auve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. https://doi.org/10.1101/gr.2289704
  14. Pritchard L. 2017. pyani: Python module for average nucleotide identity analyses. Available from https://github.com/widdowquinn/pyani.
  15. Darling AE, Mau B, Perna NT. 2010. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: 11147.
  16. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  17. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. 2015. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693. https://doi.org/10.1093/bioinformatics/btv421
  18. Conway JR., Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33: 2938-2940. https://doi.org/10.1093/bioinformatics/btx364
  19. Karp PD, Paley S, Romero P. 2002. The Pathway Tools software. Bioinformatics 18: S225-S232. https://doi.org/10.1093/bioinformatics/18.suppl_1.S225
  20. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  21. Tatusov, RL., Galperin, MY., Natale, DA., Koonin, EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
  22. De Maayer P , Anderson D, Cary C, Cowan DA. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15: 508-5017. https://doi.org/10.1002/embr.201338170
  23. Rodrigues D F, Tiedje J M. 2008. Coping with o ur c old planet. Appl. Environ. Microbiol. 74: 1677-1686. https://doi.org/10.1128/AEM.02000-07
  24. Zhang S, Song W, Yu M, Lin X. 2017. Comparative genomics analysis of five Psychrobacter strains isolated from worldwide habitats reveal high intra-genus variations. Extremophiles 21: 581-589. https://doi.org/10.1007/s00792-017-0927-1
  25. Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, et al. 2012. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7: e35784. https://doi.org/10.1371/journal.pone.0035784
  26. Du MZ, Wen W, Qin L , Liu S , Zhang A , Zhang Y, et al. 2017. Co-adaption of tRNA gene copy number and amino acid usage influences translation rates in three life domains. DNA Res. 24: 623-633. https://doi.org/10.1093/dnares/dsx030
  27. McDonald MJ, Chou CH, Swamy K B, Huang HD, Leu J . 2015. The evolutionary dynamics of tRNA-gene copy number and codon-use in E. coli. BMC Evol. Biol. 15: 163. https://doi.org/10.1186/s12862-015-0441-y
  28. Dethlefsen L, Schmidt TM. 2007. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol. 189: 3237-3245. https://doi.org/10.1128/JB.01686-06
  29. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0
  30. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. https://doi.org/10.1073/pnas.0906412106
  31. Lapierre P, Gogarten JP. 2009. Estimating the size of the bacterial pan-genome. Trends Genetics 25: 107-110. https://doi.org/10.1016/j.tig.2008.12.004
  32. Vernikos G, Medini D, Riley DR., Tettelin H. 2015. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23: 148-154. https://doi.org/10.1016/j.mib.2014.11.016
  33. Christel S, Fridlund J, Watkin EL, Dopson M. 2016. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at $8^{\circ}C$ suggesting it is a eurypsychrophile. Extremophiles 20: 903-913. https://doi.org/10.1007/s00792-016-0882-2
  34. Huynen MA, Dandekar T, Bork P. 1 999. V ariation a nd evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol 7: 281-291. https://doi.org/10.1016/S0966-842X(99)01539-5
  35. Pitson SM, Mendz GL, Srinivasan S, Hazell SL. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260: 258-267. https://doi.org/10.1046/j.1432-1327.1999.00153.x
  36. Kather B, Stingl K, van der Rest ME, Altendorf K, Molenaar D. 2000. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol. 182: 3204-3209. https://doi.org/10.1128/JB.182.11.3204-3209.2000