• Title/Summary/Keyword: Biological analysis

Search Result 7,523, Processing Time 0.035 seconds

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.

Identifying the biological and physical essence of protein-protein network for yeast proteome : Eigenvalue and perturbation analysis of Laplacian matrix (이스트 프로테옴에 대한 단백질-단백질 네트워크의 생물학적 및 물리학적 정보인식 : 라플라스 행렬에 대한 고유치와 섭동분석)

  • Chang, Ik-Soo;Cheon, Moo-Kyung;Moon, Eun-Joung;Kim, Choong-Rak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.265-271
    • /
    • 2004
  • The interaction network of protein -protein plays an important role to understand the various biological functions of cells. Currently, the high -throughput experimental techniques (two -dimensional gel electrophoresis, mass spectroscopy, yeast two -hybrid assay) provide us with the vast amount of data for protein-protein interaction at the proteome scale. In order to recognize the role of each protein in their network, the efficient bioinformatical and computational analysis methods are required. We propose a systematic and mathematical method which can analyze the protein -protein interaction network rigorously and enable us to capture the biological and physical essence of a topological character and stability of protein -protein network, and sensitivity of each protein along the biological pathway of their network. We set up a Laplacian matrix of spectral graph theory based on the protein-protein network of yeast proteome, and perform an eigenvalue analysis and apply a perturbation method on a Laplacian matrix, which result in recognizing the center of protein cluster, the identity of hub proteins around it and their relative sensitivities. Identifying the topology of protein -protein network via a Laplacian matrix, we can recognize the important relation between the biological pathway of yeast proteome and the formalism of master equation. The results of our systematic and mathematical analysis agree well with the experimental findings of yeast proteome. The biological function and meaning of each protein cluster can be explained easily. Our rigorous analysis method is robust for understanding various kinds of networks whether they are biological, social, economical...etc

  • PDF

A guide to phylotranscriptomic analysis for phycologists

  • Cheon, Seongmin;Lee, Sung-Gwon;Hong, Hyun-Hee;Lee, Hyun-Gwan;Kim, Kwang Young;Park, Chungoo
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.333-340
    • /
    • 2021
  • Phylotranscriptomics is the study of phylogenetic relationships among taxa based on their DNA sequences derived from transcriptomes. Because of the relatively low cost of transcriptome sequencing compared with genome sequencing and the fact that phylotranscriptomics is almost as reliable as phylogenomics, the phylotranscriptomic analysis has recently emerged as the preferred method for studying evolutionary biology. However, it is challenging to perform transcriptomic and phylogenetic analyses together without programming expertise. This study presents a protocol for phylotranscriptomic analysis to aid marine biologists unfamiliar with UNIX command-line interface and bioinformatics tools. Here, we used transcriptomes to reconstruct a molecular phylogeny of dinoflagellate protists, a diverse and globally abundant group of marine plankton organisms whose large and complex genomic sequences have impeded conventional phylogenic analysis based on genomic data. We hope that our proposed protocol may serve as practical and helpful information for the training and education of novice phycologists.

Six unrecorded macrofungi from the Royal Tombs(Donggureung and Seooreung) of the Joseon Dynasty and Jongmyo Shrine, Korea

  • Cho, Hae Jin;Lee, Hyun;Li, Vladimir;Jargalmaa, Suldbold;Kim, Nam Kyu;Kim, Min-Ji;Lim, Young Woon
    • Journal of Species Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Macrofungi are visible to the naked eye and play important ecological roles in nutrient cycles as decomposers and symbionts in forest ecosystems. Collectively, macrofungi have great potential as valuable resources for food, cosmetics, and medicinal uses. We surveyed the Royal Tombs (Donggureung and Seooreung) of the Joseon Dynasty and Jongmyo Shrine, where the surrounding vegetation is well-preserved, to investigate indigenous macrofungi. During surveys in 2015-2016, we discovered six macrofungi that were previously not recorded to Korea. They were identified to the species level using morphological features and phylogenetic analysis based on the internal transcribed spacer region: Cruentomycena kedrovaya, Dacrymyces aureosporus, Laetiporus versisporus, Parasola setulosa, Piptoporellus soloniensis, and Pluteus longistriatus. The detailed morphological descriptions and molecular analysis are provided in this study.

Morphological and Molecular Characterization of the Newly Reported Penicillium pimiteouiense from Field Soil in Korea

  • Mahesh Adhikari;Hyun Seung Kim;Hyun Seung Kim;Ki Young Kim;In Kyu Lee;Eun Jeong Byeon;Ji Min Woo;Hyang Burm Lee;Youn Su Lee
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.205-215
    • /
    • 2022
  • Penicillium pimiteouiense was discovered in South Korea during an investigation of fungal communities in soil collected from the Gyeongsangbuk-do province. In this study, we performed molecular analysis of this fungal isolate using internal transcribed spacer rDNA, β-tubulin, and Calmodulin gene sequences. We also performed morphological analysis using five agar media, potato dextrose, oatmeal, malt extract, czapek yeast extract, and yeast extract sucrose. In this study, the molecular and morphological analyses of P. pimiteouiense with detailed descriptions and figures has been carried out.