DOI QR코드

DOI QR Code

A guide to phylotranscriptomic analysis for phycologists

  • Cheon, Seongmin (School of Biological Science and Technology, Chonnam National University) ;
  • Lee, Sung-Gwon (School of Biological Science and Technology, Chonnam National University) ;
  • Hong, Hyun-Hee (School of Biological Science and Technology, Chonnam National University) ;
  • Lee, Hyun-Gwan (Department of Oceanography, Chonnam National University) ;
  • Kim, Kwang Young (Department of Oceanography, Chonnam National University) ;
  • Park, Chungoo (School of Biological Science and Technology, Chonnam National University)
  • Received : 2021.10.11
  • Accepted : 2021.12.07
  • Published : 2021.12.15

Abstract

Phylotranscriptomics is the study of phylogenetic relationships among taxa based on their DNA sequences derived from transcriptomes. Because of the relatively low cost of transcriptome sequencing compared with genome sequencing and the fact that phylotranscriptomics is almost as reliable as phylogenomics, the phylotranscriptomic analysis has recently emerged as the preferred method for studying evolutionary biology. However, it is challenging to perform transcriptomic and phylogenetic analyses together without programming expertise. This study presents a protocol for phylotranscriptomic analysis to aid marine biologists unfamiliar with UNIX command-line interface and bioinformatics tools. Here, we used transcriptomes to reconstruct a molecular phylogeny of dinoflagellate protists, a diverse and globally abundant group of marine plankton organisms whose large and complex genomic sequences have impeded conventional phylogenic analysis based on genomic data. We hope that our proposed protocol may serve as practical and helpful information for the training and education of novice phycologists.

Keywords

Acknowledgement

We thank the CSB lab members. This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2019R1F1A1062411 to CP, NRF-2016R1A6A1A03012647 to H-G Lee, NRF-2020R1A2C3005053 to KYK) and by the "Research center for fishery resource management based on the information and communication technology," funded by the Ministry of Oceans and Fisheries, Korea (2021, grant number 20180384 to CP).

References

  1. Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  2. Buchfink, B., Xie, C. & Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59-60. https://doi.org/10.1038/nmeth.3176
  3. Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. 2020. The new tree of eukaryotes. Trends Ecol. Evol. 35:43-55. https://doi.org/10.1016/j.tree.2019.08.008
  4. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
  5. Caron, D. A., Alexander, H., Allen, A. E., Archibald, J. M., Armbrust, E. V., Bachy, C., Bell, C. J., Bharti, A., Dyhrman, S. T., Guida, S. M., Heidelberg, K. B., Kaye, J. Z., Metzner, J., Smith, S. R. & Worden, A. Z. 2017. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15:6-20. https://doi.org/10.1038/nrmicro.2016.160
  6. Cheon, S., Zhang, J. & Park, C. 2020. Is phylotranscriptomics as reliable as phylogenomics? Mol. Biol. Evol. 37:3672-3683. https://doi.org/10.1093/molbev/msaa181
  7. Delsuc, F., Brinkmann, H. & Philippe, H. 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6:361-375. https://doi.org/10.1038/nrg1603
  8. Emms, D. M. & Kelly, S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20:238. https://doi.org/10.1186/s13059-019-1832-y
  9. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  10. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N. & Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494-1512. https://doi.org/10.1038/nprot.2013.084
  11. Hittinger, C. T., Johnston, M., Tossberg, J. T. & Rokas, A. 2010. Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life. Proc. Natl. Acad. Sci. U. S. A. 107:1476-1481. https://doi.org/10.1073/pnas.0910449107
  12. Irisarri, I., Baurain, D., Brinkmann, H., Delsuc, F., Sire, J. -Y., Kupfer, A., Petersen, J., Jarek, M., Meyer, A., Vences, M. & Philippe, H. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1:1370-1378. https://doi.org/10.1038/s41559-017-0240-5
  13. Janouskovec, J., Gavelis, G. S., Burki, F., Dinh, D., Bachvaroff, T. R., Gornik, S. G., Bright, K. J., Imanian, B., Strom, S. L., Delwiche, C. F., Waller, R. F., Fensome, R. A., Leander, B. S., Rohwer, F. L. & Saldarriaga, J. F. 2017. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc. Natl. Acad. Sci. U. S. A. 114:E171-E180.
  14. Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., Santos, S. R., Schander, C., Moroz, L. L., Lieb, B. & Halanych, K. M. 2011. Phylogenomics reveals deep molluscan relationships. Nature 477:452-456. https://doi.org/10.1038/nature10382
  15. Martin, J. A. & Wang, Z. 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671-682. https://doi.org/10.1038/nrg3068
  16. Meusemann, K., von Reumont, B. M., Simon, S., Roeding, F., Strauss, S., Kuck, P., Ebersberger, I., Walzl, M., Pass, G., Breuers, S., Achter, V., von Haeseler, A., Burmester, T., Hadrys, H., Wagele, J. W. & Misof, B. 2010. A phylogenomic approach to resolve the arthropod tree of life. Mol. Biol. Evol. 27:2451-2464. https://doi.org/10.1093/molbev/msq130
  17. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. & Lanfear, R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530-1534. https://doi.org/10.1093/molbev/msaa015
  18. Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49:490-496. https://doi.org/10.1038/ng.3813
  19. Price, D. C. & Bhattacharya, D. 2017. Robust Dinoflagellata phylogeny inferred from public transcriptome databases. J. Phycol. 53:725-729. https://doi.org/10.1111/jpy.12529
  20. Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. 2014. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31:1102-1120. https://doi.org/10.1093/molbev/msu057
  21. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798-804. https://doi.org/10.1038/nature02053
  22. Smith, S. A. & Dunn, C. W. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715-716. https://doi.org/10.1093/bioinformatics/btm619
  23. Song, H., Bethoux, O., Shin, S., Donath, A., Letsch, H., Liu, S., McKenna, D. D., Meng, G., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B. & Simon, S. 2020. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat. Commun. 11:4939. https://doi.org/10.1038/s41467-020-18739-4
  24. Stephens, T. G., Ragan, M. A., Bhattacharya, D. & Chan, C. X. 2018. Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci. Rep. 8:17175. https://doi.org/10.1038/s41598-018-35620-z
  25. Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12:1879. https://doi.org/10.1038/s41467-021-22044-z
  26. Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hosel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G. & Bleidorn, C. 2011. Phylogenomic analyses unravel annelid evolution. Nature 471:95-98. https://doi.org/10.1038/nature09864
  27. von Reumont, B. M., Jenner, R. A., Wills, M. A., Dell'ampio, E., Pass, G., Ebersberger, I., Meyer, B., Koenemann, S., Iliffe, T. M., Stamatakis, A., Niehuis, O., Meusemann, K. & Misof, B. 2012. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29:1031-1045. https://doi.org/10.1093/molbev/msr270
  28. Wang, Z., Gerstein, M. & Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. https://doi.org/10.1038/nrg2484
  29. Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L., Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Che, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K. -S. & Lee-bens-Mack, J. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U. S. A. 111:E4859-E4868.
  30. Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N. & Ma, H. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5:4956. https://doi.org/10.1038/ncomms5956
  31. Zou, Z. & Zhang, J. 2016. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7:12758. https://doi.org/10.1038/ncomms12758