• Title/Summary/Keyword: Biological Tissue

Search Result 1,381, Processing Time 0.025 seconds

A Study on Diffusion Constant Measurement Using Light Reflectance within Biological Tissue (생체조직내에서 반사광을 이용한 확산 상수의 측정에 관한 연구)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 1996
  • This paper is the study of the diffusion constant in order to calculate the percent oxygenation and percent blood volume using reflectance light within biological tissue. The diffusion constant play major role in percent oxygenation and percent blood volume and varies with the biological material such as hemolyzed blood, whole blood, dermis and epidermis in vivo tissue. The diffusion constant can be modeled to consist of a contribution from bloodless tissue and blood present in tissue. The reflectance light for experimental are red light of 660nm, infrared light of 880nm, green light of 569nm. The correlation between the diffusion constant and biological tissue was analyzed by the intensity of reflectance light at different depth within human limb. The reflectance light was changed in response to physiological changes within biological tissue. The data for diffusion constant were obtained at different depth beneath the surface of the skin and will be utilized to amen the percent oxygenation and percent blood volume.

  • PDF

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

Measuring the Light Dosimetry Within Biological Tissue Using Monte Carlo Simulation (Monte Csrlo 시뮬레이션을 이용한 생체조직내의 광선량 측정)

  • 임현수;구철희
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the correct measuring of the light dosimetry in biological tissues give the important affection to the effect of PDT treatment we used Monte Carlo simulation to measure the light dosimetry on this study. The parameters using in experiments are the optical properties of the real biological tissue, and we used Henyey-Greenstein phase function among the phase functions. As we results, we displayed the result the change of Fluence rate and the difference against the previous theory was at least 0.35%. Biological tissues using in experiment were Human tissue, pig tissue, rat liver tissue and rabbit muscle tissue. The most of biological tissue have big scattering coefficient in visible wavelength which influences penetration depth. The penetration depth of human tissue in visible region is 1.5~2cm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well.

  • PDF

A Study on the Detection of Abnormal Tissues in Biological Tissue Using Temperature Distribution According to Light Irradiation (광 조사에 따른 온도분포를 이용한 생체조직 내 비정상조직 탐지에 대한 연구)

  • Ko, Dong Guk;Im, Ihk-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • In this study, the characteristics of the temperature generated by light irradiation, on the surface of a biological tissue with an abnormal tissue part (paraffin) and at the surroundings of the abnormal tissue were studied by numerical and experimental methods. The temperature in the tissue was solved using the computational heat transfer and was compared with the temperature measured with thermocouples. The effects of the light wavelength and the irradiation time on the temperature distribution were analyzed. As a result, the temperature distribution from the irradiation of light in the biological tissue was different when there was an abnormal tissue part. The temperature in the biological tissue with the abnormal tissue part was higher than in a normal tissue.

Neuronatin Is Associated with an Anti-Inflammatory Role in the White Adipose Tissue

  • Ka, Hye In;Han, Sora;Jeong, Ae Lee;Lee, Sunyi;Yong, Hyo Jeong;Boldbaatar, Ariundavaa;Joo, Hyun Jeong;Soh, Su Jung;Park, Ji Young;Lim, Jong-Seok;Lee, Myung Sok;Yang, Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1180-1188
    • /
    • 2017
  • Neuronatin (NNAT) is known to regulate ion channels during brain development and plays a role in maintaining the structure of the nervous system. A previous in silico analysis showed that Nnat was overexpressed in the adipose tissue of an obese rodent model relative to the wild type. Therefore, the aim of the present study was to investigate the function of Nnat in the adipose tissue. Because obesity is known to systemically induce low-grade inflammation, the Nnat expression level was examined in the adipose tissue obtained from C57BL/6 mice administered lipopolysaccharide (LPS). Unexpectedly, the Nnat expression level decreased in the white adipose tissue after LPS administration. To determine the role of NNAT in inflammation, 3T3-L1 cells overexpressing Nnat were treated with LPS. The level of the p65 subunit of nuclear factor-kappa B ($NF-{\kappa}B$) and the activity of $NF-{\kappa}B$ luciferase decreased following LPS treatment. These results indicate that NNAT plays an anti-inflammatory role in the adipose tissue.

Estimation of Ultrasound Attenuation Coefficient by Homomorphic Deconvolution Method (Homomorphic Deconvolution 법에 의한 초음파 감쇄정수 추정)

  • Hong, Seung-Hong;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1984
  • In order to improve the performance of ultrasonic diagnostic equipment, it is important to development the signal processing considering the ultrasonic properties of biological medium and propagation mechanism in tissue. Attenuation coefficient is not only important factor to analyze propagation properties, but also it is significant to estimate it in view of tissue characterization, so we show one of the method to estimate attenuation coefficient of biological tissue and the results of estimation.

  • PDF

A Study on the Characteristics of Muscle Relaxation according to the Temperature Condition at the Surface of Imitational Biological Tissue (모의 생체조직의 표면온도 조건에 따른 근육이완 특성에 관한 연구)

  • Ko, Dong-Guk;Lee, Chan-Woo;Kim, Min-Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.770-775
    • /
    • 2018
  • In this study, the characteristics of muscle relaxation were analyzed by the experimental and numerical method. A skin tissue was produced by imitational biological tissue using the agar powder, saline solution and sugar. The tissue was exposed to three types of wavelength-blue visible radiation(410 nm), red visible radiation(635 nm), and infrared ray(830 nm). The temperature results along the depth of tissue were measured according to the variation of light wavelength and irradiation time. The temperature change of the tissue shown up similar pattern regardless of the light wavelength kinds. The wavelength of infrared ray penetrated strongly into tissue between 3.2 mm and 11.4 mm. Also, the temperature change with the irradiation time was small, and the temperature value of the infrared ray was the largest. As a result, the muscle relaxation will occur mainly at the infrared wavelength.

Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis

  • Sohn, Jee Hyung;Kim, Jong In;Jeon, Yong Geun;Park, Jeu;Kim, Jae Bum
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.900-908
    • /
    • 2018
  • Insulin resistance is closely associated with metabolic diseases such as type 2 diabetes, dyslipidemia, hypertension and atherosclerosis. Thiazolidinediones (TZDs) have been developed to ameliorate insulin resistance by activation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. Although TZDs are synthetic ligands for $PPAR{\gamma}$, metabolic outcomes of each TZD are different. Moreover, there are lack of head-to-head comparative studies among TZDs in the aspect of metabolic outcomes. In this study, we analyzed the effects of three TZDs, including lobeglitazone (Lobe), rosiglitazone (Rosi), and pioglitazone (Pio) on metabolic and thermogenic regulation. In adipocytes, Lobe more potently stimulated adipogenesis and insulin-dependent glucose uptake than Rosi and Pio. In the presence of pro-inflammatory stimuli, Lobe efficiently suppressed expressions of pro-inflammatory genes in macrophages and adipocytes. In obese and diabetic db/db mice, Lobe effectively promoted insulin-stimulated glucose uptake and suppressed pro-inflammatory responses in epididymal white adipose tissue (EAT), leading to improve glucose intolerance. Compared to other two TZDs, Lobe enhanced beige adipocyte formation and thermogenic gene expression in inguinal white adipose tissue (IAT) of lean mice, which would be attributable to cold-induced thermogenesis. Collectively, these comparison data suggest that Lobe could relieve insulin resistance and enhance thermogenesis at low-concentration conditions where Rosi and Pio are less effective.

A Gaussian Beam Light Distribution Model of the Biological Tissue (생체의 가우스빔 광분포모델)

  • 조진호;하영호;이건일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.654-662
    • /
    • 1988
  • A simple and useful model of light distribution for the biologhical tissue to the Gaussian beam is proposed. This model assumes that the incident Gaussian beam broadens into two Gaussian beams, travelling in the opposite directions as the result of both isotropic scattering and absorption in the tissue. With this assumption, two-dimensional light intensity of each flux as well as the equations of both absorption and scattering have been derived, and the validity of modeling has been confirmed experimentally. Consequently, the results paved a way for easy evaluation of the light distribution in the biological tissue.

  • PDF