• 제목/요약/키워드: Biological Signals

검색결과 588건 처리시간 0.027초

저출력 레이저의 치료 효과 규명을 위한 근전도 신호의 피로도 해석 연구 (Muscle Fatigue Analysis Based on Electromyography Signals for The Evaluation of Low-Level Laser Therapy)

  • 김지현;최효훈;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권4호
    • /
    • pp.319-327
    • /
    • 2011
  • Skeletal muscle fatigue is defined as a 'any reduction in the maximal capacity to generate force or power output', and is the reduction of oxygen consumption and by-product of metabolism. For the muscle fatigue therapy, low level laser has been introduced that leads the mitochondrial respiratory and attributes the muscle fatigue recovery. This study analyzed the muscle fatigue signals from electromyography(EMG) during low-level laser therapy (LLLT). Healthy subjects performed voluntary elbow flexion-extension excercise and received placebo LLLT and active LLLT using a 830 nm laser diode. Then, EMG were measured for the evaluation of muscle fatigue. The acquired EMG data were analyzed with median frequency and short time fourier transform methods. The results showed that the LLLT had a significant symptomatic relief of muscle fatigue based on the EMG frequency analysis. Therefore, the muscle fatigue analysis with EMG signals can be applied to quantitative evaluation for the monitoring of LLLT effects.

Wavelet 변환을 이용한 유발전위뇌파의 해석에 관한 연구 (A study on the analysis of evoked potentials using wavelet transform)

  • 이용희;최교환;이동규;유시영;이응구;김선일;이두수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.14-17
    • /
    • 1996
  • Evoked Potentials signals occur as a result of neuroelectric responses of the brain to sensory stimulation. In this paper, to analysis such signals we utilize a time-frequency analysis technique called wavelet transform. The wavelet analysis is performed based on a single prototype function,which can be thought of as a bandpass filter. Because the wavelet transform in a fine temporal analysis decomposes time-varying signals in EP into a dilated lowpass and a contracted highpass components, EP signal fetures can be obtained and analysed quantitatively at the levels of resolution. In the results, we analyze the VEP signal with the wavelet transform.

  • PDF

의자의 틸트 기능이 사용자의 생체 신호 및 안락도에 미치는 영향 분석 (Analysis of the Impact of Chair Tilt Function on Users' Biometric Signals and Comfort)

  • 경슬기
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.75-80
    • /
    • 2024
  • This research investigates the influence of chair tilt functionality on biometric signals and user comfort, addressing the ergonomic challenges posed by modern sedentary lifestyles. Through an experimental study involving eight male participants, the impact of chair tilt on electromyography (EMG), heart rate, metabolic rate, pressure distribution, and distance between the lumbar spine and the lumbar support part of the chair was measured across different seating postures. The study utilized chairs with both synchronous and non-synchronous tilt mechanisms to explore how adjustments in chair design affect user comfort and physiological responses during prolonged sitting. Key findings suggest that chair tilt functionality can significantly reduce muscle activity and energy expenditure, enhancing user comfort and potentially mitigating health risks associated with prolonged sedentary behavior. Notably, the study revealed a preference among participants for chairs that aligned the rotational center of the tilt with the hip joint, highlighting the importance of this ergonomic feature in enhancing user comfort. Additionally, the research proposes a novel methodology for assessing seating comfort through the analysis of both biometric and physical signals, providing valuable insights for the development of ergonomic chair designs focused on user health and comfort.

Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

  • Kwon, Yun-Jeong;Choi, Yuri;Eo, Jungwoo;Noh, Yu-Na;Gim, Jeong-An;Jung, Yi-Deun;Lee, Ja-Rang;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • 제11권3호
    • /
    • pp.142-148
    • /
    • 2013
  • SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

임피던스 변화를 이용한 실시간 기판 변형 측정 (In-situ Warpage Measurement Technique Using Impedance Variation)

  • 김우재;신기원;권희태;온범수;박연수;김지환;방인영;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.32-36
    • /
    • 2021
  • The number of processes in the manufacture of semiconductors, displays and solar cells is increasing. And as the processes is performed, multiple layers of films and various patterns are formed on the wafer. At this time, substrate warpage occurs due to the difference in stress between each film and pattern formed on the wafer. the substrate warping phenomenon occurs due to the difference in stress between each film and pattern formed on the wafer. We developed a new warpage measurement method to measure wafer warpage during real-time processing. We performed an experiment to measure the presence and degree of warpage of the substrate in real time during the process by adding only measurement equipment for applying additional electrical signals to the existing ESC and detecting the change of the additional electric signal. The additional electrical measurement signal applied at this time is very small compared to the direct current (DC) power applied to the electrostatic chuck whit a frequency that is not generally used in the process can be selectively used. It was confirmed that the measurement of substrate warpage can be easily separated from other power sources without affecting.

405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능 (The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode)

  • 정영수;정유진;이종민;최기봉
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.25-31
    • /
    • 2017
  • This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

Rescuing Developing Thymocytes from Death by Neglect

  • Chung, Hee-Kyoung;Choi, Young-I.;Ko, Myung-Gon;Seong, Rho-H.
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.7-18
    • /
    • 2002
  • The major function of the thymus is to eliminate developing thymocytes that are potentially useless or autoreactive, and select only those that bear functional T cell antigen receptors (TCRs) through fastidious screening. It is believed that glucocorticoids (GCs) are at least in part responsible for cell death during death by neglect. In this review, we will mainly cover the topic of the GC-induced apoptosis of developing thymocytes. We will also discuss how thymocytes that are fated to die by GCs can be rescued from GC-induced apoptosis in. response to a variety of signals with antagonizing properties for GC receptor (GR) signaling. Currently, a lot of evidence supports the notion that the decision is made as a result of the integration of the multiple signal transduction networks that are triggered by GR, TCR, and Notch. A few candidate molecules at the converging point of these multiple signaling pathyways will be discussed. We will particularly describe the role of the SRG3 protein as a potent modulator of GC-induced apoptosis in the crosstalk.

Optical imaging of epileptic activity and epilepsy treatments in neocortex

  • Suh, Min-Ah
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 동계학술발표회 논문집
    • /
    • pp.427-428
    • /
    • 2009
  • Optical imaging offers excellent spatio-temporal sensitivity that is unparalleled by any other perfusion based imaging techniques. We used in vivo optical recording of intrinsic signals (ORIS) to map neurovascular hemodynamics of perfusion, oximetry and membrane potential during epileptic events in rat and mouse neocortex. Studies of hemodynamic changes with ORIS alone were also performed in human. Laboratory studies in rodent epilepsy models have demonstrated a persistent increase in deoxygenated hemoglobin (Hbr) and a decrease in tissue oxygenation during interictal spikes and ictal events. This "epileptic dip", like the "initial dip" recorded during normal sensory processing, implies that the enormous rise in cerebral blood flow (CBF) is inadequate to meet the increased metabolic demands associated with synchronized epileptic activity. These findings are critically important to the interpretation of the perfusion-based imaging studies, such as fMRI. In addition, we visualized the effect of direct cortical electrical stimulation, an alterative epilepsy treatment. The optical data following direct cortical electrical stimulation showed that hemodynamic signals are sensitive to different electrical stimulation parameters. Furthermore, our recent data demonstrated that the application of unilateral electrical stimulation is able to elicit bilateral hemodynamic responses in rat neocortex.

  • PDF

Magnetocardiogram Topography with Automatic Artifact Correction using Principal Component Analysis and Artificial Neural Network

  • Ahn C.B.;Kim T.H.;Park H.C.;Oh S.J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권2호
    • /
    • pp.59-63
    • /
    • 2006
  • Magnetocardiogram (MCG) topography is a useful diagnostic technique that employs multi-channel magnetocardiograms. Measurement of artifact-free MCG signals is essenctial to obtain MCG topography or map for a diagnosis of human heart. Principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. Using the proposed technique, the MCG topography was successfully obtained without the artifact.

신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구 (A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter)

  • 장영건;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF