• 제목/요약/키워드: Biological Nutrient Removal

검색결과 170건 처리시간 0.021초

Physiological Responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) Exposed to High Ammonium Effluent in a Seaweed-based Integrated Aquaculture System

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Seo, Tae-Ho;Shin, Jong-Ahm;Chung, Ik-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.70-77
    • /
    • 2009
  • Porphyra yezoensis is known to act as a biofilter against nutrient-rich effluent in seaweed-based integrated aquaculture systems. However, few studies have examined its physiological status under such conditions. In this study, we estimated the photosynthetic activity of P. yezoensis by chlorophyll fluorescence of PSII (${\Delta}F/F'm$ and relative $ETR_{max}$) using the Diving-PAM fluorometer (Walz, Germany). In addition, bioremediation capacity, tissue nutrients, and C:N ratio of P. yezoensis were investigated. The ammonium concentration in seawater of seaweed tank 4 decreased from $72.1{\pm}2.2$ to $33.8{\pm}0.4{\mu}M$ after 24 hours. This indicates the potential role of P. yezoensis in removing around 43% of ammonium from the effluents. Tissue carbon contents in P. yezoensis were constant during the experimental period, while nitrogen contents had increased slightly by 24 hours. In comparison with the initial values, the ${\Delta}F/F'm$ and $rETR_{max}$ of P. yezoensis had increased by about 20 and 40%, respectively, after 24 hours. This indicates that P. yezoensis condition improved or remained constant. These results suggest that chlorophyll fluorescence is a powerful tool in evaluating the physiological status of seaweeds in a seaweed-based integrated aquaculture system.

BNR공정 처리수의 여과에 관한 연구 (A Study on the Filtration of BNR Process Effluent)

  • 김성용;범봉수;조광명
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.895-905
    • /
    • 2000
  • 본 연구는 여재가 모래와 무연탄인 복층 중력식 급속여과법으로 BNR(biological nutrient removal) 공정 유출수를 처리할 때 여과율의 변화에 따른 오염물질 제거효율 및 여층 깊이별 처리수질을 파악하기 위하여 수행되었다. Pilot scale의 4-stage BNR 공정 유출수를 200, 300 및 400 m/day의 여과율로 급속여과시킨 결과, 처리수는 2.6 NTU 이하의 탁도를 나타내어 우리나라의 중수도 제한수질인 5.0 NTU를 만족하였다. 여과율이 200, 300 및 400 m/day로 증가함에 따라 SS 제거효율은 각각 80.6, 75.4 및 68.9%로 감소하는 경향을 보였지만, 여과수는 모든 여과율에서 유입수의 수질변화에 큰 영향을 받지 않고 평균 1.3 mg/L의 SS 농도를 보였다. 생물학적 작용에 의하여 영양염류도 제거되었는데, 200, 300 및 400 m/day의 여과율에서 질산화효율이 각각 17.4, 18.8 및 14.3%, 그리고 탈질효율이 각각 32.3, 27.7 및 21.4%로, 질산화와 탈질이 동시에 일어났다. 여과주기의 후반기에는 여층 내의 DO가 결핍됨에 따라 인의 재용출이 일어남으로써 유출수의 T-P 농도가 유입수에 비하여 6.1~21.4% 증가하였다.

  • PDF

호흡률법에 의한 하수의 생분해 특성 평가: I. 호흡률법 (Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: I. Respirometry)

  • 김동한;김희준;정태학
    • 상하수도학회지
    • /
    • 제18권1호
    • /
    • pp.29-36
    • /
    • 2004
  • Organics may be divided into biodegradable and nonbiodegradable fractions on the basis of biodegradability. Biodegradable organics may be subdivided into readily and slowly biodegradable fractions. As this biodegradability of organics in municipal wastewater has a great influence on the efficiency of a biological nutrient removal process, it has been assessed by respirometry. The respirometer, which consisted of a respiration chamber and a respiration cell, was used to measure the respiration rate of biomass utilizing the readily biodegradable organics. The readily biodegradable organics are about 10% of the COD in municipal wastewater. The adequate ratio of wastewater to sludge volume and the concentration of sludge are required in measuring the respiration rate due to the readily biodegradable organics. By using a biochemical oxygen demand test, the slowly biodegradable organics including biomass are estimated about 66% of COD. The soluble inert organics are about 11% of COD. On the basis of mass balance, the particulate inert organics are estimated about 13% of COD.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

기존 하수처리장 성능개선을 위한 NPR공정의 적용 (An Application of the NPR Process for the Treatability Improvement of an Existing Sewage Treatment Plant)

  • 문태훈;고광백;송의열
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.756-760
    • /
    • 2007
  • Most of the sewage treatment plants in Korea are being operated by using the conventional activated sludge process. Recently, as the water criteria have been strict with regard to such main culprits of eutrophication, the existing sewage treatment plants are obliged to upgrade their treatment technology to meet the criteria. Under such circumstances, this study was aimed at analyzing the conditions of an existing sewage treatment plants in Korea, and thereupon, test its treatment performance for the actual sewage water by operating a pilot plant. When the pilot plant was operated with the NPR process at the capacity of $30m^3/day$, the average contents of BOD, $COD_{Mn}$, SS, T-N and T-P in the effluents were 7.0 mg/L, 9.7 mg/L, 5.1 mg/L, 8.0 mg/L and 0.23 mg/L, respectively, which were very stable in general. Accordingly, if the NPR process used for this pilot plant to upgrade the treatment technology for the sewage treatment plat could be adopted, the effluent water quality criteria effective beginning from 2008 would be met.

습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향 (Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method)

  • 이민수;김동진
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.

우리나라 적합 하수도시설 및 관리방안 (Appropriate Sewerage Systems for Korea)

  • 이상은
    • 환경위생공학
    • /
    • 제7권2호
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF

하수의 COD 분류 시험 방법에 관한 비교 연구 (A Comparative Study on COD Fractionation Methods of Wastewater)

  • 김성홍;윤정원;최영균
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.387-394
    • /
    • 2010
  • The influent COD of municipal wastewater has been divided into 4 fractions; readily soluble biodegradable, slowly particulate biodegradable, soluble and particulate unbiodegradable COD. The mathematical modeling of biological wastewater treatment processes and the design and operation of nutrient removal plants require a reliable and accurate estimate of the composition of influent wastewater COD. COD utilization rate is proportional to the oxygen uptake rate(OUR), so a batch biodegradation test with OUR measurement has been effectively used for the determination of COD fractionation. But the mathematical model of COD utilization and heterotrophs synthesis is essential to interpret the OUR measurement. Mamais method is another method for determining readily biodegradable soluble COD. Like the OUR test method, batch biodegradation test is necessary but it does not require mathematical model. These two methods for determining COD fractionation are introduced here in detail. Experimental results showed that COD composition by Mamais method is not different to that by OUR test method so, either of them can be used.

하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구 (A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities)

  • 박찬혁;홍석원;이상협;최용수
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm

  • You, Kwangtae;Kim, Jongrack;Pak, Gijung;Yun, Zuwhan;Kim, Hyunook
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.155-162
    • /
    • 2018
  • Process modeling with activated sludge models (ASMs) is useful for the design and operational improvement of biological nutrient removal (BNR) processes. Effective utilization of ASMs requires the influent fraction analysis (IFA) of the wastewater treatment plant (WWTP). However, this is difficult due to the time and cost involved in the design and operation steps, thereby declining the simulation reliability. Harmony Search (HS) algorithm was utilized herein to determine the relationships between composite variables and state variables of the model IWA ASM1. Influent fraction analysis was used in estimating fractions of the state variables of the WWTP influent and its application to 9 wastewater treatment processes in South Korea. The results of influent $S_s$ and $Xs+X_{BH}$, which are the most sensitive variables for design of activated sludge process, are estimated within the error ranges of 8.9-14.2% and 3.8-6.4%, respectively. Utilizing the chemical oxygen demand (COD) fraction analysis for influent wastewater, it was possible to predict the concentrations of treated organic matter and nitrogen in 9 full scale BNR processes with high accuracy. In addition, the results of daily influent fraction analysis (D-IFA) method were superior to those of the constant influent fraction analysis (C-IFA) method.