• Title/Summary/Keyword: Biological Filter

Search Result 430, Processing Time 0.031 seconds

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Development of Biological Filtration Process for Effective Nitrogen Removal and its Control strategies in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거를 위한 운전제어법 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.230-237
    • /
    • 2006
  • The operational parameters and control strategies of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. Methanol addition was controlled based on the COD/N ratio or McCarty's equation. Constant COD/N ratio control results in excess addition under large diurnal fluctuation of $NOx^--N$, and McCarty's equation can be used to add appropriate amount of methanol. Control of methanol addition by on-line nitrate measurement, control of aeration by on-line DO measurement, and control of backwashing by head loss measurement are successfully operated. These results proved that this process prove the easy-maintenance and cost-effectively treatment is attainable.

Characteristics of Bacterial Communities in Biological Filters of Full-Scale Drinking Water Treatment Plants

  • Choi, Yonkyu;Cha, Yeongseop;Kim, Bogsoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.91-104
    • /
    • 2019
  • The taxonomic and functional characteristics of bacterial communities in the pre-chlorinated rapid filters and ozonated biological activated carbon (BAC) filters were compared using Illumina MiSeq sequencing of the 16S rRNA gene and community-level physiological profiling (CLPP) based on sole-carbon-source utilization patterns. Both the rapid filters and BAC filters were dominated by Rhizobiales within ${\alpha}-proteobacteria$, but other abundant orders and genera were significantly different in both types of filter. Firmicutes were abundant only in the intermediate chlorinated rapid filter, while Acidobacteria were abundant only in the BAC filters. Bacterial communities in the rapid filter showed high utilization of carbohydrates, while those in the BAC filters showed high utilization of polymers and carboxylic acids. These different characteristics of the bacterial communities could be related to the different substrates in the influents, filling materials, and residual disinfectants. Chlorination and ozonation inactivated the existing bacteria in the influent and formed different bacterial communities, which could be resistant to the oxidants and effectively utilize different substrates produced by the oxidant, including Phreatobacter in the rapid filters and Hyphomicrobium in the BAC filters. Bradyrhizobium and Leptothrix, which could utilize compounds adsorbed on the GAC, were abundant in the BAC filters. Ozonation increased taxonomic diversity but decreased functional diversity of the bacterial communities in the BAC filters. This study provides some new insights into the effects of oxidation processes and filling materials on the bacterial community structure in the biological filters of drinking water treatment plants.

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Study on Design and Implementation of the Low Pass Digital Filter for Biological Signals by a Microprocessor (마이크로프로세서에 의한 생체신호용 저역 디지털 필터의 설계 및 구현에 관한 연구)

  • Lee, Young-Wook
    • The Journal of Information Technology
    • /
    • v.9 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • This study is for the contents of development to the hardware system and software driving algorithm to implement the frequency band of about 7KHz los pass digital filter which has the cut-off frequency of 392Hz by interfacing of a microprocessor with its peripheral analog-to-digital converter chip and digital-to-analog converter chip. The simplicity of digital filter design without difficulty and the implementation of programmed digital filter can be realized by providing the interfacing method to implement the law pass digital filter for the biological signals and the realization method of computer algorithm by a microprocessor.

  • PDF

Removal characteristics of NOMs in a slow sand filter at different media depth and operation time (완속여과공정에서 운전시간 및 여층깊이에 따른 자연유기물질(NOM) 제거 특성)

  • Park, Noh-Back;Park, Sang-Min;Seo, Tae-Kyeong;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.467-473
    • /
    • 2008
  • Natural organic matter (NOM) removal by physico-chemical adsorption and biological oxidation was investigated in five slow sand filters with different media depths. Non-purgeable dissolved organic carbon(NPDOC) and $UV_{254}$ absorbance were measured to evaluate the characteristics of NOM removal at different filter depths. Removal efficiency of NOM was in the range of 10-40% throughout the operation time. At start-up of the filters packed with clean sand media, NOM was probably removed by physico-chemical adsorption on the surface of sand through the overall layer of filter bed. However, when Schumutzdecke layer was built up after 30 days operation, the major portion of NPDOC was removed by biological oxidation and/or bio-sorption in lower depth above 50 mm. NOM removal rate in the upper 50 mm filter bed was $0.82hr^{-1}$. It was about 20 times of the rate($0.04hr^{-1}$) in the deeper filter bed. Small portion of NPDOC could be removed in the deeper filter bed by both bio-sorption and biodegradation. SEM analysis and VSS measurement clearly showed the growth of biofilm in the deeper filter bed below 500 mm, which possibly played an important role in the NOM removal by biological activity besides the physco-chemical adsorption mechanism

Comparative Study on Biological Pretreatment Processes for Biologically Stable Drinking Water (생물처리를 이용한 상수원수의 전처리공정에 관한 비교연구)

  • 우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.69-76
    • /
    • 1996
  • Biological process have the potential to remove pollutants such as biodegradable organic fraction, $NH_3-N$, ABS, etc. that may be partially removed by conventional water treatment. This study was performed to evaluate four different processes of biological pretreatment as Biological Fluidized Bed(BFB), Biological Filter(BF), Rotating Biological Contactor(RBC) and Honey Comb(HC). In a given condition it proved out that BFB and BF are prospective biological pretreatment processes because they were the most effective on the removal of organic matter and ammonia. Preozonation of raw water for biological processes increased in biodegradable organic fraction about 10-40% with 0.425-0.85 mg $O_3/mg$ DOC.

  • PDF

Role of Crossflow Module Media in Gas-liquid-solid Separation and Biomass Retention in Hybrid Anaerobic Filter (교차흐름식 모듈 충전 hybrid 혐기성여상의 기·액·고 분리능 및 슬러지보유능)

  • Chang, Duk;Chae, Hee-Wang;Bae, Hyung-Suk;Chung, In;Han, Sang-Bae;Hur, Joon-Moo;Hong, Ki-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.769-778
    • /
    • 2009
  • Performances and internal behaviors of the upflow hybrid anaerobic filters treating a dairy wastewater were analyzed to identify the functions and roles of the modular crossflow media and sludge bed layer and to discover their interrelationship in the filter. The media could perform independent biological and physical separation role without buildup of sludge bed, while the role of sludge bed was dependent on the function of the media. The filter packed with the crossflow media did not necessarily require the formation of sludge bed when treating a dairy wastewater. Biological contribution of the media was controlled by that of biologically active sludge bed complementing mutually each other. The gas-liquid-solid separation capability of the media was indispensible to ensure the active biological role of sludge bed, since sludge bed buildup without the media had no independently effective biological function. It was believed that the filter in itself could also function as a selector for physical gas-liquid-solid separation resulting in selectively concentrating particles with superior settleability in sludge bed. The sludge bed in the filter played a key role in the physical solids capture from influent as well as biological organics removal.

Effect of Hydraulic Retention Time on Biological Nitrogen Removal in Land-based Fish Farm Wastewater (육상양식장 배출수내 생물학적 질소처리시 수리학적 체류시간의 영향)

  • Park, Noh-Back
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • This study investigated the removal efficiency of organic matter and nitrogen from fish farm effluent by hydraulic retention time (HRT) using an upflow biological filter (ANR system) reactor. The recycling time and influent flow in the reactor were controlled to 14.8, 7.4, 5.5 and 3.2 h to evaluate HRT. In addition, each reactor was coupled to a fixed bed upflow filter charged with media. The results showed that removal efficiency was ${\geq}95%%$ with an HRT of 5.5 h, and nitrification efficiency was reduced to 81% with an HRT of 3.2 h, although nitrification efficiency temporarily decreased due to the shock load as HRT decreased. Total nitrogen removal rate was also reduced to about 65% with an HRT of 3.2 h, which was considered a washout effect of nitrifying and denitrifying microorganisms by increasing the shearing force to the filter media, which decreased organic matter and nitrogen removal efficiency.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.