• Title/Summary/Keyword: Biofuel cells

Search Result 26, Processing Time 0.022 seconds

Improved Power Capability with Pyrolyzed Carbon Electrodes in Micro Direct Photosynthetic/Metabolic Bio-fuel Cell

  • Moriuchi, Takeyuki;Morishima, Keisuke;Furukawa, Yuji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • As a biofuel source, direct photosynthetic/metabolic biofuel cells (DPBFC) use cyanobacteria whose photosynthesis and metabolization reactions can convert light energy to electricity, In our previous work, we fabricated a prototype micro-DPBFC that could generate a peak current density of $36{\mu}A/cm^{2}$ and a maximum power density of $270nW/cm^{2}$. In this study, we improve on the previous results by using carbon micro electromechanical systems (C-MEMS), formed from the pyrolysis of patterned photoresist, to fabricate carbon electrodes of an arbitrary shape and controlled porosity to increase the surface area. With these new C-MEMS electrodes, the maximum power density of the micro-DPBFC was $516nW/cm^{2}$, a performance twice as good as the results of our previous work.

Investigation of Direct and Mediated Electron Transfer of Laccase-Based Biocathode

  • Jamshidinia, Zhila;Mashayekhimazar, Fariba;Ahmadi, Masomeh;Molaeirad, Ahmad;Alijanianzadeh, Mahdi;Janfaza, Sajad
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Enzymatic fuel cells are promising low cost, compact and flexible energy resources. The basis of enzymatic fuel cells is transfer of electron from enzyme to the electrode surface and vice versa. Electron transfer is done either by direct or mediated electron transfer (DET/MET), each one having its own advantages and disadvantages. In this study, the DET and MET of laccase-based biocathodes are compared with each other. The DET of laccase enzyme has been studied using two methods; assemble of needle-like carbon nanotubes (CNTs) on the electrode, and CNTs/Nafion polymer. MET of laccase enzyme also is done by use of ceramic electrode containing, ABTS (2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]) /sol-gel. Cyclic voltammetric results of DET showed a pair of well-defined redox peaks at $200{\mu}A$ and $170{\mu}A$ in a solution containing 5and $10{\mu}M$ o-dianisidine as a substrate for needle-like assembled CNTs and CNTs-Nafion composite respectively. In MET method using sol-gel/ABTS, the maximum redox peak was $14{\mu}A$ in the presence of 15 M solution o-dianisidine as substrate. The cyclic voltammetric results showed that laccase immobilization on needle-like assembled CNTs or CNTs-Nafion is more efficient than the sol-gel/ABTS electrode. Therefore, the expressed methods can be used to fabricate biocathode of biofuel cells or laccase based biosensors.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications

  • JUNG SOO KEUN;CHAE YOUNG RAE;YOON JONG MOON;CHO BYUNG WON;RYU KEUN GARP
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.234-238
    • /
    • 2005
  • Glucose oxidase was immobilized on the carboxylated multi-wall carbon nanotubes (MWNT-COOHs) in the presence of a coulping reagent, 1-ethy1-3-(3-dimethylaminopropy1) carbodiimide. Significant amounts of glucose oxidase were also immobilized on MWNT-COOHs without the coupling reagent. Various conditions for the immobilization of glucose oxidase were optimized. Optimal pH for the maximal activity of the immobilized glucose oxidase shifted to 7 from the optimal pH of 6 for the maximal activity of free enzyme due to the carboxy1 groups on the surface of MWNT-COOHs. An electrode of graphite rod with a diameter of 6 mm was fabricated using the immobilized glucose oxidase. The cyclic voltammetry study of the enzyme electrode revealed that the oxidation of glucose and subsequent transfer of electrons from the oxidation of glucose to the electrode were possible by the immobilized glucose oxidase without a mediator, implying that the enzyme electrode can be utilized for the development of biofuel cells.

Biofuel Production by Immobilized Living Cells - Hydrogen Production by Photosynthetic Bacteria - (고정화 미생물에 의한 에너지 생산 - 광합성 박테리아에 의한 수소 생산 -)

  • 조영일;선용호
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.303-309
    • /
    • 1985
  • Continuous production of hydrogen by Ca alginate-immobilized photosynthetic bacteria was studied in a packed-bed bioreactor. The dilution rate and input concentration of carbonaces substrate were selected as operating parameters. To choose the strain for immobilization, hydrogen productivities of Rhodopseudomonas caposulata 10006 and Rhodospirillum rubrum KS-301 were compared through preliminary batch cultures of their free cells: the former was found to show better hydrogen productivity in spite of its lower specific growth rate. For the continuous production of hydrogen by immobilized R capsulata, the optimum dilution rate was about 0.84 h$^{-1}$ . The Immobilized tells gave better hydrogen yield and conversion efficiency than free ones. And a kinetic parameter K'$_{m}$ was determined for the packed-bed bioreactor, being practically constant for a specific range of dilution rates.s.

  • PDF

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.

Direct Electrode Reaction of Fe(III)-Reducing Bacterium, Shewanella putrefaciens

  • Kim, Byung-Hong;Kim, Hyung-Joo;Hyun, Moon-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Anaerobically grown cells of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-l, were electrochemically active with an apparent reduction potential of about 0.15 V against a saturated calomel electrode in the cyclic voltammetry. The bacterium did not grow fermentatively on lactate, but grew in an anode compartment of a three-electrode electrochemical cell using lactate as an electron donor and the electrode as the electron acceptor. This property was shared by a large number of Fe(III)-reducing bacterial isolates. This is the first observation of a direct electrochemical reaction by an intact bacterial cell, which is believed to be possible due to the electron carrier(s) located at the cell surface involved in the reduction of the natural water insoluble electron acceptor, Fe(III).

  • PDF

Cell Disruption of Microalgae by Low-Frequency Non-Focused Ultrasound (저주파 초음파를 이용한 미세조류 파쇄)

  • Bae, Myeong-Gwon;Choi, Jun-Hyuk;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • Recently, bioenergy research using microalgae, one of the most promising biofuel sources, has attracted much attention. Cell disruption, which can be classified as physical or chemical, is essential to extract functional ingredients from microalgae. In this study, we investigated the cell disruption efficiency of Chlorella sp. using low-frequency non-focused ultrasound (LFNFU). This is a continuously physical method that is superior to chemical methods with respect to environmental friendliness and low processing cost. A flat panel photobioreactor was employed to cultivate Chlorella sp. and its growth curve was fitted both with Logistic and Gompertz models. The temporal change in cell reduction by cell disruption using LFNFU was fitted with a Logistic model. The experimental conditions that were investigated were the initial concentration of microalgal cells, relative amplitude of output ultrasound waves, processing volume of microalgal cells, and initial pH value. The optimal conditions for the most efficient cell disruption were determined through the various tests.

Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the $Q_{max}$ of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel.

Efficient Phosphinothricin Mediated Selection of Callus Derived from Brachypodium Mature Seed

  • Jeon, Woong Bae;Lee, Man Bo;Kim, Dae Yeon;Hong, Min Jeong;Lee, Yong Jin;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • Brachypodium distachyon is rapidly emerged in biological study and has been currently used as a model system for genetics and functional studies for crop improvement and biofuel production. Phosphinothricin (PPT) has been widely used as a selectable agent, which raises ammonium content and induces toxicity in non-transformed plant cells. However PPT selection is not much effective on Brachypodium callus consequently reducing transformation efficiency. In order to identify the efficient conditions of PPT selection, calli obtained from mature seeds of Brachypodium (PI 254867) were cultured on the callus inducing medium (CIM) or regeneration medium (ReM) containing serial dilutions of the PPT (0, 2, 5, 10, and 15 mg/l) in dark or light condition. Callus growth and ammonium content of each treatment were measured 2 weeks after the treatment. Although callus growth and ammonium content did not show much difference in CIM, slow callus growth and increased ammonium accumulation were found in ReM. No significant difference of ammonium accumulation in response to PPT was found between dark and light conditions. In order to identify major factors affecting increased ammonium accumulation, callus was cultured on the media in combined with phytohormones (2,4-D or kinetin) and carbon sources (sucrose or maltose) containing with PPT (5 mg/l). The highest ammonium content in callus was found in the kinetin and maltose media.