• Title/Summary/Keyword: Biofuel cells

Search Result 26, Processing Time 0.033 seconds

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate (유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작)

  • Sung, Jungwoo;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.388-391
    • /
    • 2014
  • The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex (폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조)

  • Nguyen, Linh Thi My;Li, Nan;Yoon, Hyon Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

Ultrastructure of the Rust Fungus Puccinia miscanthi in the Teliospore Stage Interacting with the Biofuel Plant Miscanthus sinensis

  • Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.299-304
    • /
    • 2015
  • Interaction of the the rust fungus Puccinia miscanthi with the biofuel plant Miscanthus sinensis during the teliospore phase was investigated by light and electron microscopy. P. miscanthi telia were oval-shaped and present on both the adaxial and abaxial leaf surfaces. Teliospores were brown, one-septate (two-celled), and had pedicels attached to one end. Transmission electron microscopy revealed numerous electron-translucent lipid globules in the cytoplasm of teliospores. Extensive cell wall dissolution around hyphae was not observed in the host tissues beneath the telia. Hyphae were found between mesophyll cells in the leaf tissues as well as in host cells. Intracellular hyphae, possibly haustoria, possessed electron-dense fungal cell walls encased by an electron-transparent fibrillar extrahaustorial sheath that had an electron-dense extrahaustorial membrane. The infected host cells appeared to maintain their membrane-bound structures such as nuclei and chloroplasts. These results suggest that the rust fungus maintains its biotrophic phase with most mesophyll cells of M. sinensis. Such a nutritional mode would permit the rust fungus to obtain food reserves for transient growth in the course of host alteration.

Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes

  • Kim, Dong-Min;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.125-139
    • /
    • 2013
  • The electrical conductive polymers (ECPs) reported at my research group are introduced in this review, which works are started from the late Professor Su-Moon Park's pioneering research for polyaniline at the University of New Mexico. The electrochemical and spectroelectrochemical properties and their applications to sensor and energy conversion systems are briefly described. At first, the growth and degradation mechanism of polyaniline describes and we extend to polypyrrole, polyazulene, polydiaminonaphthalenes, and polyterthiophene derivatives. In addition, the preparation of monomer precursors having functional groups is briefly described that can give us many exceptional applications for several chemical reactions. We describe the application of these ECPs for the fabrication of chemical sensors, biosensors, biofuel cells, and solar cells.

Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp.

  • Lee, Su-Jin;Choi, Woo-Seok;Park, Gun-Hoo;Kim, Tae-Ho;Oh, Chulhong;Heo, Soo-Jin;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • Microalgae hold promise as a renewable energy source for the production of biofuel, as they can convert light energy into chemical energy through photosynthesis. However, cost-efficient harvest of microalgae remains a major challenge to commercial-scale algal biofuel production. We first investigated the potential of electrolytic water as a flocculant for harvesting Tetraselmis sp. Alkaline electrolyzed water (AEW) is produced at the cathode through water electrolysis. It contains mineral ions such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ that can act as flocculants. The flocculation activity with AEW was evaluated via culture density, AEW concentration, medium pH, settling time, and ionic strength analyses. The flocculation efficiency was 88.7% at 20% AEW (pH 8, 10 min) with a biomass concentration of 2 g/l. The initial biomass concentration and medium pH had significant influences on the flocculation activity of AEW. A viability test of flocculated microalgal cells was conducted using Evans blue stain, and the cells appeared intact. Furthermore, the growth rate of Tetraselmis sp. in recycled flocculation medium was similar to the growth rate in fresh F/2 medium. Our results suggested that AEW flocculation could be a very useful and affordable methodology for fresh biomass harvesting with environmentally friendly easy operation in part of the algal biofuel production process.

Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101

  • Jeon, Bo Young;Kim, Bo Young;Jung, Il Lae;Park, Doo Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1471-1477
    • /
    • 2012
  • Carotenoids produced by non-photosynthetic bacteria protect organisms against lethal photodynamic reactions and scavenge oxygenic radicals. However, the carotenoid produced by Gordonia alkanivorans SKF120101 is coupled to reducing power generation. SKF120101 selectively produces carotenoid under light conditions. The growth yield of SKF120101 cultivated under light conditions was higher than that under dark condition. In the cyclic voltammetry, both upper and lower voltammograms for neutral red (NR) immobilized in intact cells of SKF120101 were not shifted in the condition without external redox sources but were commonly shifted downward by glucose addition and light. Electric current generation in a biofuel cell system (BFCS) catalyzed by harvested cells of SKF120101 was higher under light than dark condition. The ratio of electricity generation to glucose consumption by SKF120101 cultivated in BFCS was higher under light than dark condition. The carotenoid produced by SKF120101 catalyzes production of reducing power from light energy, first evaluated by the electrochemical technique used in this research.