• 제목/요약/키워드: Biofilm Process

검색결과 158건 처리시간 0.027초

정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교 (Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant)

  • 김근수;민병대;박수정;오정환;조익환;장석재;김지혜;박상민;박주현;정현미;안태영;정원화
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.313-320
    • /
    • 2013
  • 정수처리 시설에서 급 배수관으로 많이 사용되는 스테인리스관과 동관에 형성되는 생물막의 특성에 대해 16주 동안 조사하였다. 생물막 반응기는 실제 배급수관의 구조와 유사하게 설계하였으며, 정수처리장으로 유입되는 상수원수와 약품혼화 응집수, 침전수, 여과수, 처리수를 사용하였다. 평균 종속영양세균수는 $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml로 각 처리 과정을 거치면서 감소하였다. 스테인리스관과 동관에 형성된 생물막 세균수는 원수, 응집수, 침전수에서 2주만에 $2.9{\times}10^3CFU/cm^2$ 이상으로 증가하였고, 동관보다 스테인리스관에서 생물막 세균수가 높게 검출되었다. 여과수(평균 잔류염소 0.44 mg/L)에서는 두 관 재질에 따른 생물막 세균수의 명확한 차이는 없었으며, 5주 이후부터 두 관재질 모두 $18CFU/cm^2$ 이하의 생물막 세균이 검출되었다. 정수(평균 잔류염소 0.88 mg/L)에서는 두 관 재질 모두 생물막 세균이 검출되지 않았다. DGGE 분석결과, 원수, 응집수, 침전수에서 스테인리스관은 Sphingomonadaceae가 우점이였고, 동관에서는 Bradyrhizobiaceae와 함께 Sphingomonadaceae도 우점이였다. 여과수의경우, 5주차 이후 스테인리스관과 동관에 형성된 생물막에서 Propionibacterium sp., Sphingomonas sp., Escherichia sp. 등과 유사한 16S rRNA 유전자 서열을 가지는 밴드들이 검출되었다. 종 풍부도 및 다양성은 동관에 비해 스테인리스관이 더 높게 나타났다.

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

생물학적 폐가스 처리공정 내 멤브레인 활용 (Application of Membranes for Biological Waste Gas Treatment Processes)

  • 이상훈
    • 멤브레인
    • /
    • 제31권5호
    • /
    • pp.327-332
    • /
    • 2021
  • 멤브레인 기반의 MBRWG (Membrane Bioreactor for Waste Gas) 처리기술은 폐가스 흐름에 대한 높은 선택성을 바탕으로 효과적인 생물학적 제거를 수행할 수 있다. MBRWG에는 몇 가지 잠재적 이점이 있는데, 이 중 가장 두드러진 점은 기상과 액상이 멤브레인 양쪽으로 명확히 분리되어 액상 내 생물막의 최적제어가 용이하고 이를 통해 효과적인 생분해와 생물막의 활성화를 도모할 수 있다는 것이다. MBRWG 처리기술은 특히 xylene 같은 소수성 독성 기체 성분 제거에 유리한데 이는 소수성 기체의 물질전달속도, 독성 및 제거율이 생물막 인근의 액상흐름 및 수분제어에 민감하게 변화하기 때문이다. MBRWG 처리에 쓰이는 다양한 멤브레인 중에서 PDMS-중공사막(hollow fiber)이 가장 높은 기체 물질 전달을 제공한다고 보고되었다. Capillary 형태도 중공사막형태에 비해 비표면적은 낮지만 비교적 활발한 연구가 진행되고 있다. 소수성 기체성분 제거 외에도 기존 생물학적 폐가스 처리 장치에서 배출된 잔류 기체 혼합물이나 먼지를 제거하기 위한 후단 공정에서 멤브레인 활용을 고려할 수 있다.

Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment

  • Park, Seong-Joo;Yoon, Jerng-Chang;Shin, Kwang-Soo;Kim, Eung-Ho;Yim, Soo-Bin;Cho, Yeon-Je;Sung, Gi-Moon;Lee, Dong-Geun;Kim, Seung-Bum;Lee, Dong-Uk;Woo, Sung-Hoon;Koopman, Ben
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.113-121
    • /
    • 2007
  • The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.

BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가 (Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process)

  • 손형식;정철우;최영익;이건;손희종
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1101-1109
    • /
    • 2014
  • In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

기존 활성슬러지 공정의 MBBR 공정 적용가능성 평가 (Application of MBBR Process in the Activated Sludge Process)

  • 박운지;이해승;이찬기;김성근
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.457-465
    • /
    • 2004
  • The objective of this study is to evaluate the possibility to apply the Moving Bed Biofilm Reactor(MBBR) in the activated sludge treatment process with existing aerobic HRT. Optimal operation conditions were assumed according to the analysis of organic matter and nutrients removal efficiencies depending on loading variations. The process was operated under different conditions: RUN I(HRT=7.14hr, $I{\cdot}R=100%$), RUN II(HRT=6.22hr, $I{\cdot}R=100%$), RUN III(HRT=6.22 hr, $I{\cdot}R=150%$), RUN IV(HRT=6.22hr, $I{\cdot}R=200%$), the TBOD removal efficien cies are 88%, 88.5%, 94.6%, 97.6%, respectively. Overall TSS removal efficiency is 90%, and it is increasing in RUN IV. In the case of Nitrogen, the highest removal efficiency of 90% was observed in RUN III and RUN IV, Nitrification and Denitrification rates are 0.013-0.016kg $NH_3-N/kg$ Mv-d and 0.009-0.019kg $NO_3/kg$ Mv-d, respectively. Phosphorus removal efficiencies are 89.6% in RUN I, 91.5% in RUN II, 84.3% in RUN III, and 76.4% in RUN IV. The process under shorter SRT yields better performance in terms of phosphorus removal. It was noticed that to achieve the effluent phosphorus concentration ofless than 1mg/L and removal efficiency higher than 80%, SRT should not be longer than 10 days. Experimental result shows that HRT of 6.22 hours is suitable for this treatment process, and, as a result, the aerobic reactor including moving media and DO depletion tank have a sufficient effect to the process performance.

Isolation and Characterization of Biofouling Bacteria in Ultra-high Purity Water Used in the Semiconductor Manufacturing Process

  • Kim, In-Seop;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.554-558
    • /
    • 2000
  • Bacteria were isolated and identified from an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16-megabyte DRAM semiconductor manufacturing. Scanning electron microscopic and microbiological observations revealed that the primary source of the bacteria isolated from the UHPW was detached cells from biofilms developed on the pipe wall through which the UHPW, a man-made and extremely nutrient poor environment, was passing. About 63-65% of the bacteria isolated from the UHPW and the pipe wall were Gram-positive, whereas only 10% of the bacteria isolated from the feed water were Gram-positive. The of Gram-positive bacteria and seven genera of Gram-negative bacteria. Strains of the UHPW bacteria effectively adhered to and formed a biofilm on the surface of polyvinyl chloride (PVC) pipe.

  • PDF

Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites

  • Dhami, Navdeep Kaur;Reddy, M. Sudhakara;Mukherjee, Abhijit
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.707-714
    • /
    • 2013
  • Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.

Comprehensive Evaluation of the Current Knowledge on Breast Implant Associated-Anaplastic Large Cell Lymphoma

  • Yoo, Hyokyung;Park, Ji-Ung;Chang, Hak
    • Archives of Plastic Surgery
    • /
    • 제49권2호
    • /
    • pp.141-149
    • /
    • 2022
  • Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently spotlighted T-cell origin non-Hodgkin's lymphoma with an increasing incidence of over 800 cases and 33 deaths reported worldwide. Development of BIA-ALCL is likely a complex process involving many factors, such as the textured implant surface, bacterial biofilm growth, immune response, and patient genetics. As the incidence of BIA-ALCL is expected to increase, it is important for all surgeons and physicians to be aware of this disease entity and acquire thorough knowledge of current evidence-based guidelines and recommendations. Early detection, accurate diagnosis, and appropriate treatment are the foundations of current care.

볏짚을 이용한 유동장 여재제조 및 제지폐수처리 (Manufacture of the Fluidizing Media Using Rice Straw and Paper Wastewater Treatment)

  • 윤병태;김기윤;김성보;최명재
    • 펄프종이기술
    • /
    • 제39권2호
    • /
    • pp.9-16
    • /
    • 2007
  • Biological treatment using the activated sludge method and biofilm process has been developed for paper wastewater treatment. It is known that a water treatment using biofilm process has a high efficiency be-cause a great deal of microorganism could adhere to media. It is also known that various plastics such as polyurethane and polyethylene have been used as the media. In this study polyethylene was used as a media and rice straw an additive agent to improve porous and hydrophilic properties of the media for waste water treatment. Porosity and hydrophilic characteristics of polyethylene was increased as rice straw was added to polyethylene. Paper wastewater was then treated with newly developed environment materials. Rice straw showed excellent results in waste water treatment in various media. This environmentally friendly material prepared by polyethylene and rice straw could show similar results to those of a commercial porous polyurethane foam in wastewater treatment.