• Title/Summary/Keyword: Bioenergy crop

Search Result 227, Processing Time 0.039 seconds

Isolation and functional analysis of three microsomal delta-12 fatty acid desaturase genes from Camelina sativa (L.) cv. CAME (카멜리나 (Camelina sativa L. cv. CAME)로부터 3 microsomal delta-12 fatty acid desaturase 유전자들의 분리 및 기능 분석)

  • Kim, Hyojin;Go, Young Sam;Kim, Augustine Yonghwi;Lee, Sanghyeob;Kim, Kyung-Nam;Lee, Geung-Joo;Kim, Gi-Jun;Suh, Mi Chung
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.146-158
    • /
    • 2014
  • Camelina sativa that belongs to Brassicaceae family is an emerging oilseed crop. Camelina seeds contain approximately 40% storage oils per seed dry weight, which are useful for human and animal diets and industrial applications. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. In this study, three CsFAD2 genes (CsFAD2-1, CsFAD2-2 and CsFAD2-3.1) were isolated from developing seeds of Camelina sativa (L.) cv. CAME. The nucleotide and deduced amino acid sequences of three CsFAD2 genes were compared with those from dicotyledon and monocotyledon plants including Camelina cultivars Sunesone and SRS933. Three histidine motifs (HECGH, HRRHH, and HVAHH) required for FAD activity and a hydrophobic valine or isoleucine residue, which is a SNP (single nucleotide polymorphism) marker related with enzyme activity are well conserved in three CsFAD2s. The expressions of CsFAD2-1 and CsFAD2-3.1 were ubiquitously detected in various Camelina organs, whereas the CsFAD2-2 transcripts were predominantly detected in flowers and developing seeds. The contents of oleic acids decreased, whereas the amounts of linoleic acid increased in dry seeds of transgenic fad2-2 lines expressing each CsFAD2 gene compared with fad2-2 mutant, indicating that three CsFAD2 genes are functionally active. The isolated CsFAD2 genes might be applicable in metabolic engineering of storage oils with high oleic acids in oilseed crops.

Comparative Environmental Effects of Digestates Application to the Rice Paddy Soil in Bioenergy Village : Field trial (저탄소녹색마을내 혐기소화액 순환이용에 대한 논토양 환경 영향 비교)

  • Hong, Seung-Gil;Shin, JoungDu;Kwon, Soon-Ik;Park, Woo-Kyun;Heo, Jeong-Wook;Bang, Hea-Son;Yoon, Youngman;Kang, Kee-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.123-130
    • /
    • 2011
  • Objectives of this study were to compare the environmental effects of digestates produced in bioenergy village on the rice paddy field for recycling. Digestates were applied to the soils and the soil properties and the crop responses were analyzed according to the standard methods of soil evaluation. Plant height and the number of tiller showed similar results in both the conventional and digestate treated field, and the yield of rough rice was higher in the field treated with digestates than that with chemical fertilizer. The amounts of nitrogen absorbed in straw and grain were larger in the digestates-treated field than chemical fertilizer-treated one, and efficiency of nitrogen applied was shown to be the highest in 100% treated digestate of the pig manure. Exchangeable cation and pH increased in the soil treated with digestate after harvesting, but salt was not accumulated. With these results, it was concluded that resource recycling in green town can be facilitated through the securement of arable lands for the application of digestates and the proper use of these fertilizers. Long-term effects of digestate application on the soil environment should be sustainingly studied.

Rice Quality Characterization According to Damaged Low Temperature in Rice Plant (벼 냉해 발생시 피해정도에 따른 쌀 품질 특성 구명)

  • Kim, Deog-Su;Song, Jin;Lee, Jung-Il;Chun, A-Reum;Jeong, Eung-Gi;Kim, Jung-Tae;Hur, On-Sook;Kim, Sun-Lim;Suh, Sae-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.452-457
    • /
    • 2009
  • The objective of this study was to provide fundamental data on breeding cultivar and cultural technique to identify quality characterization according to damage degrees in rice when are damaged at low temperature. For induction of cold damage, we treated the irrigation water at $17^{\circ}C$ from the panicle formation stage to the heading date. The rice products were harvested by grades according to the sterility ratio and investigated 5 items of quality analysis including ripened grain ratio, brown/rough rice ratio, 1000 grain weight of brown rice, protein content, and amylose content. The quality analysis were characterized by each items according to the sterility ratio. As a result, the ripened grain ratio was y=1.0444x-7.6597($R^2=0.9874^{**}$), protein content was y=-0.046x+10.875 ($R^2=0.6973^*$), and head rice ratio was y=-0.2306x+104.32 ($R^2=0.634^*$), but the amylose content, brown/rough rice ratio and the milled/brown rice ratio were not significant. The rice plants, which injured by the low temperature, had bad influence in the yield and quality. Consequently, the breeding of rice cultivar and development of cultural technique are required to improve its cold tolerance.

Future Prospects for Industrial Application of Abscisic acid, a Stress-resistant Phytohormone (스트레스 내성 식물 호르몬인 앱시스산의 산업적 활용 전망)

  • Lee, Jeongho;Kim, Seunghee;Yoo, Hah Young
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.514-523
    • /
    • 2020
  • Plants are exposed to various types of stresses in their surroundings, and stress-resistant and regulatory proteins are produced as defense mechanisms. Abscisic acid is well known for its important role in stress signals as a phytohormone and is also involved in the physiological reactions of plants such as leaf senescence and seed dormancy. In particular, it has been found to perform a variety of functions in other biological systems, such as animals and microalgae, not plants. In this review, the biosynthesis and signaling process of abscisic acid and its function were investigated and the future prospects for the industrial application of abscisic acid in various biotechnologies, including agriculture, biomedical and industrial biotechnology, have been proposed based on study of emerging applications such as increased crop yields, disease treatment development and bioenergy production.

Newly Recorded Noctuid Pest, Leucapamea askoldis (Lepidoptera: Noctuidae) from Amur Silver Grass, Miscanthus sacchariflorus

  • Jung, Young Hak;You, Eun Ju;Ahn, Jong-Woong;Park, Jung-Joon;Choo, Young- Moo;Choo, Ho Yul;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.355-358
    • /
    • 2017
  • Amur silver grass, Miscanthus sacchariflorus is one of the promising biofuel weeds. A damage of noctuid pest, Leucapamea askoldis was firstly observed from Amur silver grass in Hwasun silver grass plantation during the survey of insect pests of Amur silver grass in Iksan, Hwasun, and Sancheong plantation areas in Korea. The host of L. askoldis was not known yet in Korea. The L. askoldis damage was observed as larval feeding on newly grown shoots and roots of M. sacchariflorus close to soil surface from early May in 2013. Investigated larval density was $1.6{\pm}1.1per\;m^2$ on April 4 and damage rate of shoots was $0.8{\pm}0.4%$ on May 4, 2013. The larvae bore into shoots of M. sacchariflorus and feed on the inside of plant. The damaged shoots are easily pulled out and distinguished by the boring hole on the shoots. L. askoldis was potential insect pest in M. sacchariflorus plantation areas.

Impact Assessments of High Oil Prices on the Agro-Food System and the Role of Bioenergy Crops

  • Lee, Duu-Hwa;Lin, Hsin-Chun;Chang, Ching-Cheng;Hsu, Shih-Hsun;Chen, Chi-Chun;Sun, Jenny Chin-Hwa
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.653-682
    • /
    • 2007
  • In this study, multi-sectoral partial equilibrium and computable general equilibrium models of Taiwan are used to investigate the direct and indirect effects of energy price increases on overall economies and agro-food sector in Taiwan. The results suggest that agricultural prices, production cost would increase between 0.27% to 1.88%, and a reduction in GDP around 0.39% to 0.54 %. The negative impact on livestock sector is slightly higher than that on the crop sector. Negative impacts are also observed in the employment and wages. The rising oil price has the potential to discourage production of energy-intensive activity because of the possibility of substitution and adaptations. The growth rate of real GDP will shrink by 0.64% to 1.06% and CPI will increase by 1.17% to 1,95%. Both the agriculture and non-agricultural sector also respond by raising output prices by 0.80% to 1.33%. The rising international oil price has urged the government to take policy actions like using alternative fuels such as biodiesel, bioethanol, and adopting measures to cut down on energy consumptions mainly in transportation sectors in response to public concern over economic shocks.

  • PDF

Change in Soil Properties after Planting Giant Miscanthus (거대억새 단지 조성에 따른 토양 특성 변화)

  • Kang, Ku;Hong, Seong-Gu;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.69-75
    • /
    • 2013
  • Miscanthus has received wide attention as an option for biomass production in Korea, recently. New strain of giant miscanthus has been developed and was planted in two large trial sites (184 ha) in the lower reaches of the Geum River. To evaluate the susceptibility of the giant miscanthus as an bioenergy crop for the future, we investigated the influence of the giant miscanthus on the soil properties. The particle size, CEC, pH, EC, T-N, T-P, heavy metal total concentration, and heavy metal fractions of soil samples collected from abandoned field, 1 year old giant miscanthus field (1st Year GM), and 2 year old giant miscanthus field (2nd Year GM) at different depths of 0~15, 15~30, and 30~45 cm in April and August were analyzed. Results showed that the CEC and pH of the soil of the giant miscanthus field were lower than those of the soil of abandoned field. The EC of 2nd GM was lower than that of abandoned field, indicating that the giant miscanthus may facilitate soil desalination process. The organic and sulfide fraction and residual fraction of heavy metals in the giant miscanthus field was higher than in abandoned field, due to the low pH of the giant miscanthus field and the excretion of phytosiderophores by rhizome of the giant miscanthus. This study showed that the giant miscanthus can influence on the soil properties and further study for long term is needed to elucidate the interaction between the soil and the giant miscanthus.

Future Directions and Perspectives on Soil Environmental Researches (토양환경분야 연구동향 및 전망)

  • Yang, Jae-E.;Ok, Yong-Sik;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1286-1294
    • /
    • 2011
  • This paper reviews the future directions and perspectives on the soil environmental researches in the 21 century. Previously, the principal emphasis of soil environmental researches had put on the enhancement of food and fiber productions. Beside the basic function of soil, however, the societal needs on soil resources in the 21st century have demands for several environmental and social challenges, occurring regionally or globally. Typical global issues with which soil science should deal include food security with increasing agronomic production to meet the exploding world population growth, adaptation and mitigation of climate change, increase of the carbon sequestration, supply of the biomass and bioenergy, securing the water resource and quality, protection of environmental pollution, enhancing the biodiversity and ecosystem health, and developing the sustainable farming/cropping system that improve the use efficiency of water and agricultural resources. These challenges can be solved through the sustainable crop production intensification (SCPI) or plant welfare concept in which soil plays a key role in solving the abovementioned global issues. Through implementation of either concept, soil science can fulfill the goal of the modern agriculture which is the sustainable production of crops while maintaining or enhancing the ecosystem function, quality and health. Therefore, directions of the future soil environmental researches should lie on valuing soil as an ecosystem services, translating research across both temporal and spatial scales, sharing and using data already available for other purposes, incorporating existing and new technologies from other disciplines, collaborating across discipline, and translating soil research into information for stakeholders and end users. Through the outcomes of these approaches, soil can enhance the productivity from the same confined land, increase profitability, conserve natural resource, reduce the negative impact on environment, enhance human nutrition and health, and enhance natural capital and the flow of ecosystem services. Soil is the central dogma, final frontier and new engine for the era of sustainability development in the $21^{st}$ century and thus soil environmental researches should be carried according to this main theme.

Physicochemical Characteristics of Sikhye (Korean Traditional Rice Beverage) with Specialty Rice Varieties (특수미 품종에 따른 식혜의 이화학적 특성)

  • Kim, Kee-Jong;Woo, Koan-Sik;Lee, Jin-Seok;Chun, A-Reum;Choi, Yoon-Hee;Song, Jin;Suh, Sae-Jung;Kim, Sun-Lim;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1523-1528
    • /
    • 2008
  • This study was carried out to compare the physicochemical characteristics and sensory quality of Sikhye (a Korean traditional rice beverage) prepared with specialty rice varieties. The results showed that Ilpum had higher hulling recovery, milled/brown rice ratio, and milling recovery than Sulgaeng, Baegjinju, Baegjinju 1, and Dongjinchal. The alkali digestive value, protein content, and amylose contents of Sulgaeng were 6.3, 7.3% and 19.3%, respectively. The highest brix degree was $10.00^{\circ}Bx$ in Baegjinju Sikhye. The turbidity appeared at 0.4440, 0.4100, 0.3828, 0.3372, 0.1414 in Ilpum, Baegjinju, Baegjinju 1, Sulgaeng, and Dongjinchal Sikhye, respectively. There were no significant differences in pH and maltose contents among the groups. The highest L-value was 44.62 in Ilpum Sikhye. The a-value and b-value were $-1.66{\sim}-0.70$ and $-9.18{\sim}-5.19$, respectively. Finally, the sensory evaluation results indicated that there were no significant differences in appearance, aroma, and taste between the groups, and the Sulgaeng Sikhye showed higher overall quality than the Dongjinchal Sikhye as the control.

Current status on global sweetpotato cultivation and its prior tasks of mass production (세계 고구마 재배현황 및 대량생산의 선결과제)

  • Kim, Ho Soo;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kim, Sung-Tai;Kim, Jin-Seog;Kim, Sangyong;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Sweetpotato [Ipomoea batatas (L.) Lam] represents an attractive starch crop that can be used to facilitate solving global food and environmental problems in the $21^{st}$ century. It can be used as industrial bioreactors to produce various high value-added materials, including bio-ethanol, functional feed, antioxidants, as well as food resources. The non-profit Center for Science in the Public Interest (CSPI) announced sweetpotato as one of the ten 'super foods' for better health, since it contains high levels of low molecular weight antioxidants such as vitamin-C, vitamin-E and carotenoids, as well as dietary fiber and potassium. The United States Department of Agriculture (USDA) also reported that sweetpotato is the best bioenergy crop among starch crops on marginal lands, that does not affect food security. The Food and Agriculture Organization (FAO) estimated that world population in 2050 will be 9.7 billion, and require approximately 1.7 times more food than today. In this respect, sweetpotato will be a solution to solving problems such as food, energy, health, and environment facing the globe in the $21^{st}$ century. In this paper, the current status of resources, and cultivation of sweetpotato in the world was first described. Development of a new northern route of the sweetpotato and its prior tasks of large scale cultivation of sweetpotato, were also described in terms of global food security, and production of high-value added biomaterials.