• Title/Summary/Keyword: Biodegradable Film

Search Result 118, Processing Time 0.032 seconds

Improved Hydrolysis Resistance of Biodegradable Mulching Films (생분해성 멀칭필름의 내가수분해성 향상)

  • Sim, Jae-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.349-354
    • /
    • 2022
  • This research was conducted in order to improve the hydrolysis resistance and mechanical properties of a resin compound and biodegradable mulching film, produced through the use of PBAT(Poly Butylene Adipate-co-Terephthalate) and PLA(Poly Lactic Acid). Various ratios of chain extenders and mechanical properties according to the annealing temperature conditions were investigated. The annealing process showed that compound resin can improve the crystallization capacity. In addition, incorporation of the chain extender was shown to improve and increase the tensile strength and hydrolysis resistance of the film. In the case of 0.6phr chain extender, the tensile strength was 383.0Kgf/cm2, which was improved by 155% compared to the control films. When the blow up ratio(BUR) was 2.5, the optimal tensile strength of the film increased greatly, expanding up to 379.0/195.2kgf/cm2 in the both machine direction (MD) and transverse direction (TD).

Serial Vascular Responses of Balloon-Expandable Stent With Biodegradable Film-Type Graft in a Rabbit Iliac Artery Dissection Model (BioGard Study)

  • Sang Min Park;Kyung-Chan Choi;Byeong Han Lee;Sang Yol Yoo;Christopher Y. Kim
    • Korean Circulation Journal
    • /
    • v.54 no.8
    • /
    • pp.499-512
    • /
    • 2024
  • Background and Objectives: Arterial dissection during endovascular therapy rarely occurs but can be lethal. A fabric-based covered graft stents yield poor clinical outcomes. A novel balloon-expandable stent with biodegradable film graft for overcoming these issues was evaluated in a rabbit iliac artery model. Method: Eighteen rabbits with iliac artery dissections were induced by balloon over-inflation on angiography (Ellis type 2 or 3) and treated using the test device (3.0×24 mm). Subsequently, survived twelve animals underwent histologic examinations and micro-computed tomography (CT) at 0, 2, 4, and 8 weeks and 3, 6, 9, and 12 months and angiography at one-year. Results: There were no adverse cardiovascular events during the one-year. Early-stage histologic examination revealed complete sealing of disrupted vessels by the device, exhibiting mural hematoma, peri-stent red thrombi, and dense infiltration of inflammatory cells. Mid- and long-term histologic examination showed patent stents with neointimal hyperplasia over the stents (% area stenosis: 11.8 at 2 weeks, 26.1 at 1 month, 29.7 at 3 months, 49.2 at 9 months, and 51.0 at 1 year), along with mild peri-strut inflammatory response (Grade: 1-2 at mid-term and 0-1 at long-term). The graft film became scarcely visible after six months. Both CT and angiography revealed no instances of thrombotic occlusion or in-stent restenosis (% diameter stenosis: 5.7 at 2 weeks, 12.3 at 1 month, 14.2 at 3 months, 25.1 at 9 months, and 26.6 at 1 year). Conclusions: The novel balloon-expandable stent with a biodegradable film graft demonstrates feasibility in managing severe artery dissection and preventing lethal vascular events in animal model.

Preparation of Sea Urchin Skeleton Film Containing Robinia pseudoacacia Flower Extract (아까시 꽃 추출물을 첨가한 성게 껍질 필름의 제조)

  • Yang, Hyun-Ju;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.778-781
    • /
    • 2016
  • Sea urchin skeleton (SUS) generated from production of sea urchin eggs was used as a biodegradable film base material, and its composite film with gelatin was prepared. In addition, Robinia pseudoacacia flower extract (RFE) was incorporated into the film-forming solution to provide antioxidant and anti-microbial activities. The tensile strength (TS) of the SUS/gelatin composite films increased with increasing gelatin content, whereas elongation at break (E) decreased. Among the composite films, SUS/gelatin film at a ratio of 8:2 (w/w) exhibited the most desirable TS and E values. Furthermore, SUS composite film containing RFE showed a reduced TS and increased E compared to the control film. Based on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays and disc diffusion results against growth of Listeria monocytogenes, antioxidant and anti-microbial activities of films increased with increasing RFE concentration. Consequently, SUS composite film containing RFE showed proper physical properties as well as antioxidant and anti-microbial activities. These results indicate that SUS can be used as a film base material while the SUS composite film containing RFE can be utilized as active packaging.

Effects of Biodegradable Mulching Film Application on Cultivation of Garlic (마늘 재배시 생분해성 멀칭 필름 이용효과)

  • Lee, Jae Han;Kim, Mok Jong;Kim, Hong Lim;Kwack, Yong Bum;Kwon, Joon Kook;Park, Kyoung Sub;Choi, Hyo Gil;Khoshimkhujaev, Bekhzod
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.326-332
    • /
    • 2015
  • The effect of biodegradable mulching film on the growth and development of garlic were investigated in order to develop eco-friendly weed control techniques. The treatments included biodegradable film (Bio-De) and black (Black-PE), green (Green-PE), transparent (Trans-PE) polyethylene mulching films. Non-mulched, bare soil (Non-mulching) was used as a control. Light transmittance value among tested mulching films was the highest in Trans-PE (86.1%) followed by Bio-DE and Green-PE, and the lowest value was observed for the Black-PE (1.1%). All mulching films without exclusion elevated soil temperature, especially Trans-PE and Bio-DE compared to bare soil. Plant height and mean bulb weight were increased due to mulching films with the highest values observed for Trans-PE and Bio-DE treatments. After seven months of field application there were no significant degradation signs on PE plastic films, whereas it was easy to see horizontal cracks on the Bio-DE film surface after five month of usage.

Preparation and Mechanical Properties of Wheat Protein Isolate Films Cross-linked with Resorcinol

  • Chandrasekhar, M.;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The purpose of the present work was to preparation and study of full biodegradable Eco-friendly bio-composites by using renewable resources. In this study, wheat protein isolate (WPI) films were formed by cross linking with resorcinol through solution casting method for packaging applications. By varying the resorcinol content (10, 20, 30, 40, and 50 wt %), its effect on mechanical properties of the wheat protein isolate film was measured. The addition of 20% resorcinol led to an overall increase in the tensile strength from 5.2 to 18.6 MPa and modulus increase from 780 to 1132 MPa than WPI films. The % elongation was increased from 2.8 to 9.05 when compared to unmodified WPI film. A thermal phase transition of the prepared WPI was assessed by means of DSC. FTIR is evident that the characteristic WPI spectral IR bands shifted on cross-linking with resorcinol.

In vitro Biodegradability and Surface Properties of Block Copoly(ester-ether)s Consisting of Poly(L-lactide) and Polyether

  • Lee, Chan-Woo;Kim, Yoshiharu ura
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2003
  • Cell attachment and proliferation on the polymer films of triblock copolymer(ester-ether)s comprising po1y (L-1actide) (PLLA) and poly (oxyethylene-co-oxypropylene)(PN) were investigated using 3T3 fibroblasts. It was found that on the tissue culture polystyrene(TCPS) and the PLLA control film the cells could spread well while on the copolymer films the cells showed a rounded morphology without spreading and proliferated weakly. Especially, little cells proliferated on the films of copolymer having a LN composition of 20 wt%. While the water absorption of the copolymer films increased with increasing PN content, the contact angle against water of copolymer films immersed in aqueous medium was almost identical, being slightly lower than that of the PLLA film. These properties were compatible with the results of cell attachment. The in vitro hydrolysis of the films of triblock and multiblock type copolymers was faster with increasing PN content. The increased hydrolyzability, the flexibility and the decreased cell attachment suggested that these copolymers may have high potential as biodegradable materials for medical use.

Effects of Various Biodegradable Mulching Films on Growth, Yield, and Soil Environment in Soybean Cultivation (콩 재배지에서 다양한 생분해성 멀칭필름 종류별 작물 생육, 수량 및 토양환경에 미치는 영향)

  • Ye-Guon Kim;Yeon-Hu Woo;Hyun-Hwa Park;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • The objective of this study was to evaluate the safety of biodegradable mulching films in soybean (Glycine max) cultivation by measuring their effects on crop growth and yield, film decomposition and soil chemical and physical properties. In 2022 and 2023, plant height, branch number, chlorophyll contents, yield components, and yield of soybean did not vary significantly in areas using PE films and biodegradable mulching films. The light transmission rate of the biodegradable mulching films ranged from 6.4 to 15.8% when measured 112 days after soybean transplanting, and was higher, on average, in 2023 than in 2022. In both years, degradation of the biodegradable mulching films began 20 days after soybean transplantation and increased over time. In addition, remains of biodegradable mulching films were present in fields at soybean harvest and remained until 50 days after harvest. Decomposition rates of the biodegradable mulching films at 112 days after soybean transplanting ranged from 9.8 to 26.7% in 2022 and 13 to 36% in 2023. Although soil pH and EC varied based on the year and timing of measurements, there was no significant difference between areas that used biodegradable mulching films and PE films. Soil organic matter, nitrate and exchangeable cation contents such as Ca, Mg, and K were not significantly different in areas that used both PE films and biodegradable films. However, significantly higher levels of available phosphoric acid content were measured in areas that used biodegradable mulch films E, S, and T. Regardless of which films were used, there were no significant differences in the soil's physical properties. In 2022 and 2023, there was no difference between areas that used biodegradable mulch films and PE films. However, soil temperature in mulched areas was 2℃ higher and soil moisture was 5-15% higher than in non-mulched areas. Barley growth was not affected by being planted in soil that had been used for soybean cultivation with biodegradable films. Therefore, the biodegradable mulch films used in this study can be used without negatively affecting the growth, yield, and soil environment of soybeans.

Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.691-709
    • /
    • 2007
  • Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk (농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발)

  • You, Young-Sun;Kim, Mi-Kyung;Park, Myung-Jong;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

Biodegradation and Preparation of Biodegradable Film by using Natural Gums (천연 Gum류를 이용한 생분해성 필름의 제조와 생체분해)

  • Hwang, Sung-Kwy;Kim, Pan-Gyi;Hwang, Seong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 1998
  • Gum is known as natural polymer. Biodegradable films were prepared by solution blend method in the weight ratio of natural gums(Xanthan, Locust bean, Guar) for the purpose of useful bioimplants. The possibility of bioimplants, which prepared from natural gums as a skin substitute was evaluated by measuring biodegradability. This biodegradable films were inserted in the back of rats and their of biodegradability were investigated by hematological change evaluation as a function of time to the biotransformation. Rats implantation test results showed that Guar induced increments of monocyte and basophil after 48 hours of implantation. And Locust bean showed increase of monocyte and neutrophile counts after 48 hours of implantation. And Xanthan induced decrease of monocyte and neutrophile at 24 hours after implantation. Guar and Locust showed high hemoglobin contents and hematocrit after 48 hours of implantation. Guar and Locust induced some suspects of incompatibility in the tissue after 48 hours, but three were little effects to the skin inflammation at 24 hours. These values of biodegradable films, which prepared from prepared from natural gums measured in this were some satisfiable results at short period with those of ideal skin bioimplants.