• 제목/요약/키워드: Biodegradable Film

검색결과 118건 처리시간 0.023초

Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase

  • Yubin Jeon;HyeJi Jin;Youjung Kong;Haeng-Geun Cha;Byung Wook Lee;Kyungjae Yu;Byongson Yi;Hee Taek Kim;Jeong Chan Joo;Yung-Hun Yang;Jongbok Lee;Sang-Kyu Jung;See-Hyoung Park;Kyungmoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1076-1083
    • /
    • 2023
  • Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.

키토산의 분자량에 따른 랫드에서의 적용 (Application of Rats According to Molecular Weight of Chitosan)

  • 정덕채;이기창;윤철훈;김판기;신동환
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.58-63
    • /
    • 1999
  • Biodegradable films were prepared by solution blend method in the weight ratio of chitosan for the purpose of useful biomaterials. The possibility of biomaterials prepared from natural polymer as a skin substitute was evaluated by measuring biocompatibility. These films were inserts in the back of rat and their biodegradability was investigated by the film weight and hematology as a function of time for the biotransformation. The result of rat test showed that medium, high viscosity chitosan induced some suspects of inbiocompatibility in the tissue by goreign body reaction 48 and 72 hours after implantation. Also, we prepared the official burn ointment which is made by low viscosity chitosan. This burn ointment was covered on the skin wound of artificial burn and their effect of healing was investigated by the evaluation of the naked eye and hematological change as a function of time. The result of rats test showed that burn ointments made from chitosan was effective reductio of inflammation than negative group.

  • PDF

분자량에 따른 키토산 필름의 특성 (Molecular weight of chitosan affect characteristics of chitosan films)

  • 임종환;함경식;박선영
    • 한국포장학회지
    • /
    • 제6권1호
    • /
    • pp.24-30
    • /
    • 2000
  • 분자량이 다른 네 종류의 키토산으로 제조한 필름의 색깔, 수증기투과도, 수분용해도, 인장강도 및 연신율을 측정하여 키토산 필름의 특성에 미치는 키토산의 분자량의 영향에 대해 조사하였다. 일반적으로 키토산 필름의 총색차와 수분용해도는 키토산의 분자량이 증가할수록 감소하였으며, 반면에 인장강도와 연신율은 키토산의 분자량이 증가할수록 증가하는 경향을 나타냈다. 키토산 필름의 수증기투과도는 키토산의 분자량과 뚜렷한 상관관계를 보이지 않았다.

  • PDF

재활용 PET를 활용한 합성 사이즈제 개발 및 종이의 내수성 부여에 관한 연구 (제1보) - 재활용 PET를 이용한 내수제 제조 - (Development of Synthetic Sizing Agent Using Recycling Polyethylene Terephtahalate and its Sizing Efficiency (Part 1) - Manufacture of sizing agent with recycling PET -)

  • 박재석;김형진
    • 펄프종이기술
    • /
    • 제40권4호
    • /
    • pp.27-33
    • /
    • 2008
  • Polyethylene terephtahalate has been used in several areas such as fiber, film, bottle, and disposable products. Production of PET has been rapidly increasing these days. Since PET is a semi-permanent material, it has a non-biodegradable character in itself. Wasted PET products can cause serious environmental problems. Many countries around the world impose environmental legal restrictions over their abandonments. Many researches on the enviromental influence factors and treatment techniques of the wasted PET have been carried out. The main objective of this study is to develop a new sizing agent using recycling PET and improve its internal sizing effect. Dried powder of PET was used to make the modified PET. After extracting water-dispersible PET by subcritical hydrolysis, polyester resins have been extracted and triphenyl phosphate(TPP) has been added to obtain optimal internal sizing agent. It was found that the optimum dosage of TPP was 2% (per PET weight) and the hydrolysis temperature was independent on making the modified PET.

자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화 (Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • 제27권5호
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.

셀룰로오스 나노 파이버를 적용한 레토르트 포장재 개발 (Development of Retort Packaging Material Using Cellulose Nano Fiber)

  • 이진희;최정락;구강
    • 한국염색가공학회지
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2021
  • As modern society develops, it becomes very complex and diverse, and interests in the convenience of life and the natural environment are gradually increasing. Products used in our daily life are also changing according to the needs of consumers, and food packaging is one of them. In particular, retort packaging materials have been used for the purpose of long-term preservation of contents, but the appearance of products suitable for recent environmental issues has been somewhat delayed. Therefore, in order to develop eco-friendly and human-friendly products by replacing the metals used in the existing retort packaging materials, the possibility of substitution was examined using cellulose nanofibers, a natural material. As a result, it can be seen that all functions can be replaced according to the existing long-term storage characteristics for retort packaging films. In particular, not only oxygen permeability and water vapor permeability, which are one of the most important factors, but also heat resistance, which is heating durability, is evaluated as applicable to commercialization compared to products using metals currently in use.

마이크로피브릴화 셀룰로오스(MFC)/프로폴리스 첨가 PLA 필름 제조 및 특성 분석 (Manufacture and Characterization of Microfibrillated Cellulose (MFC)/Propolis-Incorporated PLA Films)

  • 이연주;강혜지;김민수;정영훈
    • 한국포장학회지
    • /
    • 제29권2호
    • /
    • pp.103-110
    • /
    • 2023
  • The study aimed to enhance the properties of polylactic acid (PLA), a biodegradable and biocompatible substitute for fossil-based plastics. Since the applicability of PLA has been limited because of its toughness and brittleness, microfibrillated cellulose (MFC) and propolis were introduced into PLA. As a result, the PLA film with MFC/propolis showed significant improvements in mechanical strength, elongation, and storage modulus, while also experiencing a decrease in the glass transition temperature. Additionally, the presence of polyphenols in propolis led to a reduction in light transmittance in the UV wavelength range. These enhancements are attributed to MFC tightly bonding with PLA polymers, and propolis acting as a plasticizer and mediator between MFC and PLA, preventing agglomeration. These reinforced PLA films have the potential to be used in flexible packaging for light-sensitive products.

친열성(親熱性) 생물막공법(生物膜工法)을 이용(利用)한 폐활성(廢活性) 슬러지의 혐기성(嫌氣性) 소화(消化) (Waste Activated Sludge Digestion with Thermophilic Attached Films)

  • 한웅전
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.31-44
    • /
    • 1985
  • 팽창형 혐기성(嫌氣性) 생물막공법(生物膜工法)(AAFEB)을 고온(高溫)($55^{\circ}C$)에서 부유물질(浮遊物質)이 많은 경우에 적용시킨 것은 최근의 일이다. 폐활성(廢活性)슬러지(WAS)는 이 공법(工法)으로 약 6 시간의 짧은 체류기간으로 효과적(效果的)으로 소화(消化)될 수 있다는 사실이 밝혀지고 있다. 만약 이러한 고율(高率)의 소화법(消化法)이 개발적용(開發適用)된다면, 현(現) 소화조(消化槽)의 소요체적(所要體積)을 99% 가량 감소(減少)시킬 수 있기 때문에 슬러지 처리분야(處理分野)에 매우 흥미로운 사실(事實)이 아닐 수 없을 것이다. 본(本) 논문(論文)은 이 공법(工法)에 대한 최근(最近) 1년(年) 반(半)동안의 연구결과를 요약한 것이다. 본(本) 연구(硏究)에 있어서 연속적(連續的)으로 주입(注入)되는 3개(個)의 실험실(實驗室) 소화조(消化槽)($55^{\circ}C$)가 사용(使用)되었다. 그 중(中) 1개(個)의 소화조(消化槽)는 AAFEB 소화조(消化槽)와의 비교(比較)를 위한 완전혼합형(完全混合形) 소화조(消化槽)였다. 2개(個)의 AAFEB 소화조(消化槽) 중에 1개(個)는 가수분해조(加水分解槽)를 별도(別途)로 설치(設置)한 2단(段)의 경우와 가수분해조(加水分解槽)가 없는 1단(段)의 경우로 구분시켜 비교하였다. 실험(實驗)에 사용(使用)된 WAS는 실험실(實驗室) 활성(活性)슬러지 반응조(反應曺)와 실제의 하수처리장(下水處理場)으로부터 채취한 것이었다. 1단(段)의 AAFEB의 경우, 결과를 보면 WAS 내의 생물분해가능(生物分解可能) 유기물질(有機物質)의 60%가 15시간의 체류기간으로 분해(分解)되였으며, 2단(段)의 경우에는 같은 체류기간에서 95%의 분해효율(分解效率)을 보였다. 고온소화(高溫消化)의 실제적용가능성(實際適用可能性)과 아울러 적용시(適用時)의 문제점 등을 검토(檢討)하였다.

  • PDF