• 제목/요약/키워드: Biochemical characterization

검색결과 685건 처리시간 0.038초

Purification and biochemical characterization of two novel antigens from Leishmania major promastigotes

  • Zeinali, Majid;Ardestani, Sussan K.;Kariminia, Amina
    • Parasites, Hosts and Diseases
    • /
    • 제45권4호
    • /
    • pp.287-293
    • /
    • 2007
  • The identification and characterization of antigens that elicit human T cell responses is an important step toward understanding of Leishmania major infection and ultimately in the development of a vaccine. Micropreparative SDS-PAGE followed by electro transfer to a PVDF membrane and elution of proteins from the PVDF, was used to separate 2 novel proteins from L. major promastigotes, which can induce antibodies of the IgG2a isotype in mice and also are recognized by antisera of recovered human cutaneous leishmaniasis subjects. Fractionation of the crude extract of L. major revealed that all detectable proteins of interest were present within the soluble Leishmania antigens (SLA). Quantitation of these proteins showed that their expression in promastigotes is relatively very low. Considering the molecular weight, immunoreactivity, chromatographic and electrophoretic behavior in reducing and non-reducing conditions, these proteins are probably 2 isoforms of a single protein. A digest of these proteins was resolved on Tricine-SDS-PAGE and immunoreactive fragments were identified by human sera. Two immunoreactive fragments (36.4 and 34.8 kDa) were only generated by endoproteinase Glu-C treatment. These immunoreactive fragments or their parent molecules may be ideal candidates for incorporation in a cocktail vaccine against cutaneous leishmaniasis.

Characterization of Phage-Resistant Strains Derived from Pseudomonas tolaasii 6264, which Causes Brown Blotch Disease

  • Yun, Yeong-Bae;Han, Ji-Hye;Kim, Young-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2064-2070
    • /
    • 2018
  • Pseudomonas tolaasii 6264 is a representative strain that causes bacterial blotch disease on the cultivated oyster mushroom, Pleurotus ostreatus. Bacteriophages are able to sterilize the pathogenic P. tolaasii strains, and therefore, they can be applied in creating disease-free mushroom cultivation farms, through a method known as "phage therapy". For successful phage therapy, the characterization of phage-resistant strains is necessary, since they are frequently induced from the original pathogenic bacteria in the presence of phages. When 10 different phages were incubated with P. tolaasii 6264, their corresponding phage-resistant strains were obtained. In this study, changes in pathogenic, genetic, and biochemical characteristics as well as the acquired phage resistance of these strains were investigated. In the phylogenetic analyses, all phage-resistant strains were identical to the original parent strain based on the sequence comparison of 16S rRNA genes. When various phage-resistant strains were examined by three different methods, pitting test, white line test, and hemolytic activity, they were divided into three groups: strains showing all positive results in three tests, two positive in the first two tests, and all negative. Nevertheless, all phage-resistant strains showed that their pathogenic activities were reduced or completely lost.

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.

Isolation and Characterization of Mucous Exopolysaccharide (EPS) Produced by Vibrio furnissii Strain VB0S3

  • Bramhachari P.V.;Kishor P.B. Kavi;Ramadevi R.;Kumar Ranadheer;Rao, B. Rama;Dubey Santosh Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.44-51
    • /
    • 2007
  • Marine bacterial strains were isolated trom coastal regions of Goa and screened for the strains that produce the highest amount of mucous expolysaccharide (EPS). Our screening resulted in the identification of the strain Vibrio furnissii VB0S3 (hereafter called VB0S3), as it produced the highest EPS in batch cultures during the late logarithmic growth phase. The isolate was identified as VB0S3 based on morphological and biochemical properties. Growth and EPS production were studied in mineral salts medium supplemented with NaCl (1.5%) and glucose (0.2%). The exopolymer was recovered from the culture supernatant by using three volumes of cold ethanol precipitation and dialysis procedure. Chemical analyses of EPS revealed that it is primarily composed of neutral sugars, uronic acids, and proteins. Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide, and the EPS also possessed good emulsification activity. The gas chromatographic analysis of an alditol-acetate derivatized sample of EPS revealed that it was mainly composed of galactose and glucose. Minor components found were mannose, rhamnose, fucose, ribose, arabinose, and xylose. EPS was readily isolated from culture supernatants, which suggests that the EPS was a slime-like exopolysaccharide. This is the first report of exopolysaccharide characterization that describes the isolation and characterization of an EPS expressed by Vibrio surnissii strain VB0S3. The results of the study contribute significantly and go a long way towards an understanding of the correlation between growth and EPS production, chemical composition, and industrial applications of the exopolysaccharide in environmental biotechnology and bioremediation.

Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination

  • Younis, Uzma;Athar, Mohammad;Malik, Saeed Ahmad;Bokhari, Tasveer Zahra;Shah, M. Hasnain Raza
    • Advances in environmental research
    • /
    • 제6권2호
    • /
    • pp.127-137
    • /
    • 2017
  • Cotton is the major fiber crop in Pakistan that accounts for 2% of total national gross domestic product (GDP). After picking of cotton, the dry stalks are major organic waste that has no fate except burning to cook food in villages. Present research focuses use of cotton stalks as feedstock for biochar production, its characterization and effects on soil characteristics. Dry cotton stalks collected from agricultural field of Bahauddin Zakariya University, Multan, Pakistan were combusted under anaerobic conditions at $450^{\circ}C$. The physicochemical analysis of biochar and cotton stalks show higher values of % total carbon, phosphorus and potassium concentrations in biochar as compared to cotton stalks. The concentration of nitrogen was decreased in biochar. Similarly biochar had greater values of fixed carbon that suggest its role for carbon sequestration and as a soil amendment. The fourier transformation infrared spectroscopic spectra (FTIR) of cotton stalks and biochar exposed more acidic groups in biochar as compared to cotton stalks. The newly developed functional groups in biochar have vital role in increasing surface properties, cation exchange capacity, and water holding capacity, and are responsible for heavy metal remediation in contaminated soil. In a further test, results show increase in the water holding capacity and nutrient retention by a sandy soil amended with biochar. It is concluded that cotton stalks can be effectively used to prepare biochar.

Probing of Potential Luminous Bacteria in Bay of Bengal and Its Enzyme Characterization

  • Balan, Senthil S.;Raffi, S.M.;Jayalakshmi, S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.811-817
    • /
    • 2013
  • The present study dealt with the isolation, identification and enzyme characterization of potential luminous bacteria from water, sediment, squid, and cuttle fish samples of the Karaikal coast, Bay of Bengal, India during the study period September 2007 - August 2008. Bioluminescent strains were screened in SWC agar and identified using biochemical tests. As Shewanella henadai was found to be the most common and abundant species with maximum light emission [69,702,240 photons per second (pps)], the optimum ranges of various physicochemical parameters that enhance the luciferase activity in Shewanella hanedai were worked out. The maximum luciferase activity was observed at the temperature of $25^{\circ}C$ (69,674,387 pps), pH of 8.0 (70,523,671 pps), salinity of 20 ppt (71,674,387 pps), incubation period of 16 h (69,895,714 pps), 4% peptone (70,895,152 pps) as nitrogen source, 0.9% glycerol (71,625,196 pps), and the ionic supplements of 0.3% $CaCO_3$ (73,991,591 pps), 0.3% $K_2HPO_4$ (73,919,915 pps), and 0.2% $MgSO_4$ (72,161,155 pps). Shewanella hanedai was cultured at optimum ranges for luciferase enzyme characterization. From the centrifuged supernatant, the proteins were precipitated with 60% ammonium sulfate, dialyzed, and purified using anion-exchange chromatography, and then luciferase was eluted with 500 mM phosphate of pH 7.0. The purified luciferase enzyme was subjected to SDS-PAGE and the molecular mass was determined as 78 kDa.

벼 배발생 세포의 특성과 배발생 관련 유전자의 분이 - 배발생 세포에 관련된 동이효소 특성 - (Characterization and Cloning of Genes Related to Embryogenic Cells in Rice - Characterization of Isozymes Related to Embryogenic Cells -)

  • 정병균;백윤웅;고경민;남백희;황백
    • Journal of Plant Biology
    • /
    • 제38권1호
    • /
    • pp.55-62
    • /
    • 1995
  • 벼(Oryza sativa L. cv. Kye Hwa) 성숙종자에서 유도한 배발생 세포(embryogenic cell, EC)의 동위효소 발현양상과 효소활성을 조사하였다. 배발생 캘러스로부터 확립된 EC 현탁배양은 세포가 둥글며 세포질이 충만한 세포들로 이루어졌으나 비배발생 세포(nonembryogenic cell, NEC)의 현탁배양은 크게 신장한 액포화된 세포들로 구성되었다. 이러한 EC와 NEC의 peroxidase, esterase, acid phosphatase 그리고 malate dehydrogenase의 동위효소 양상과 활성도를 분석한 결과 밴드의 수와 특이성 그리고 밴드 활성 등에 현저한 차이를 보여주었으며 또한 이들 동위효소의 효소 활성도 측정 결과 EC에서 훨씬 더 높게 나타났다. NEC에는 나타나지 않은 EC의 특이 밴드와 강한 밴드 활성 그리고 높은 효소 활성 등은 EC의 형태적, 분화능과의 관련성을 내포하고 있다. 이러한 결과들은 이들 효소의 특이 밴드들이 벼에서 EC의 생화학적 표지자로서 사용될 수 있음을 내포하고 있다.

  • PDF

Isolation, Characterization and Numerical Taxonomy of Novel Oxalate-oxidizing Bacteria

  • Sahin, Nurettin;Gokler, Isa;Tamer, Abdurrahman
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.109-118
    • /
    • 2002
  • The present work is aimed at providing additional new pure cultures of oxalate utilizing bacteria and its preliminary characterization for further work in the field of oxalate-metabolism and taxonomic studies. The taxonomy of 14 mesophilic, aerobic oxalotrophic bacteria isolated by an enrichment culture technique from soils rhizosphers, and the juice of the petiole/stem tissue of plants was investigated. Isolates were characterized with 95 morphological, biochemical and physiological tests. Cellular lipid components and carotenoids of isolates were also studied as an aid to taxonomic characterization. All isolates were Gram-negative, oxidase and catalase positive and no growth factors were required. In addition to oxalates, some of the strains grow on methanol and/or formate. The taxonomic similarities among isolates, reference strains or previously reported oxalotrophic bacteria were analysed by using the Simple Matching (S/ sub SM/) and Jaccard (S$\_$J/) Coefficients. Clustering was performed by using the unweighted pair group method with arithmetic averages (UPGMA) algorithm. The oxalotrophic strains formed five major and two single-member clusters at the 70-86% similarity level. Based on the numerical taxonomy, isolates were separated into three phenotypic groups. Pink-pigmented strains belonged to Methylobacterium extorquens, yellow-pigmented strains were most similar to Pseudomonas sp. YOx and Xanthobacter autorophicus, and heterogeneous non-pigmented strains were closely related to genera Azospirillum, Ancylobacter, Burkholderia and Pseudomonas. New strains belonged to the genera Pseudomonas, Azospirillum and Ancylobacter that differ taxonomically from other known oxalate oxidizers were obtained. Numerical analysis indicated that some strains of the yellow-pigmented and nonpigmented clusters might represent new species.

Identification and Characterization of a New Alkaline Thermolysin-Like Protease, BtsTLP1, from Bacillus thuringiensis Serovar Sichuansis Strain MC28

  • Zhang, Zhenghong;Hao, Helong;Tang, Zhongmei;Zou, Zhengzheng;Zhang, Keya;Xie, Zhiyong;Babe, Lilia;Goedegebuur, Frits;Gu, Xiaogang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1281-1290
    • /
    • 2015
  • Thermolysin and its homologs are a group of metalloproteases that have been widely used in both therapeutic and biotechnological applications. We here report the identification and characterization of a novel thermolysin-like protease, BtsTLP1, from insect pathogen Bacillus thuringiensis serovar Sichuansis strain MC28. BtsTLP1 is extracellularly produced in Bacillus subtilis, and the active protein was purified via successive chromatographic steps. The mature form of BtsTLP1 has a molecule mass of 35.6 kDa as determined by mass spectrometry analyses. The biochemical characterization indicates that BtsTLP1 has an apparent Km value of 1.57 mg/ml for azocasein and is active between 20℃ and 80℃. Unlike other reported neutral gram-positive thermolysin homologs with optimal pH around 7, BtsTLP1 exhibits an alkaline pH optimum around 10. The activity of BtsTLP1 is strongly inhibited by EDTA and a group of specific divalent ions, with Zn2+ and Cu2+ showing particular effects in promoting the enzyme autolysis. Furthermore, our data also indicate that BtsTLP1 has potential in cleaning applications.

Exoproduction and Biochemical Characterization of a Novel Serine Protease from Ornithinibacillus caprae L9T with Hide-Dehairing Activity

  • Li, Xiaoguang;Zhang, Qian;Gan, Longzhan;Jiang, Guangyang;Tian, Yongqiang;Shi, Bi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.99-109
    • /
    • 2022
  • This study is the first report on production and characterization of the enzyme from an Ornithinibacillus species. A 4.2-fold increase in the extracellular protease (called L9T) production from Ornithinibacillus caprae L9T was achieved through the one-factor-at-a-time approach and response surface methodological optimization. L9T protease exhibited a unique protein band with a mass of 25.9 kDa upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This novel protease was active over a range of pH (4-13), temperatures (30-80℃) and salt concentrations (0-220 g/l), with the maximal activity observed at pH 7, 70℃ and 20 g/l NaCl. Proteolytic activity was upgraded in the presence of Ag+, Ca2+ and Sr2+, but was totally suppressed by 5 mM phenylmethylsulfonyl fluoride, which suggests that this enzyme belongs to the serine protease family. L9T protease was resistant to certain common organic solvents and surfactants; particularly, 5 mM Tween 20 and Tween 80 improved the activity by 63 and 15%, respectively. More importantly, L9T protease was found to be effective in dehairing of goatskins, cowhides and rabbit-skins without damaging the collagen fibers. These properties confirm the feasibility of L9T protease in industrial applications, especially in leather processing.