• Title/Summary/Keyword: Biochar structure

Search Result 13, Processing Time 0.019 seconds

Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar

  • Zhao, Yijun;Feng, Dongdong;Zhang, Yu;Tang, Wenbo;Meng, Shun;Guo, Yangzhou;Sun, Shaozeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.659-664
    • /
    • 2016
  • In order to resolve the AAEM species migration routes and the interaction relationship between biochar structure and AAEM species during biomass pyrolysis, experiments were performed in an entrained flow reactor with $N_2$ at $500{\sim}900^{\circ}C$. ICP-AES, XPS and SEM-EDX were used to examine content and distribution of AAEM species and the physicochemical structures of biochar. The results show that at $500{\sim}700^{\circ}C$, the precipitation rate of AAEM species is relatively high. At high temperature (>$700^{\circ}C$), the AAEM species continue to migrate from interior to exterior, but little precipitation from biochar surface. And the migration of AAEM species is mainly realized by the C-O bond as the carrier medium. The AAEM species on biochar surface are mainly Na, Mg and Ca (<$700^{\circ}C$), while changing to K, Mg and Ca (${\geq}700^{\circ}C$). From $500^{\circ}C$ to $900^{\circ}C$, the biochar particle morphology gradually changes from fibers to porous structures, finally to molten particles. At $700{\sim}900^{\circ}C$, Ca element is obviously enriched on the molten edge of the biochar porous structures.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Evaluation of Efficient Pb Removal from Aqueous Solutions using Biochar Beads (바이오차 비드를 이용한 수용액에서 Pb의 효율적인 처리효율 평가)

  • Yu-Jin Park;Jae-Hoon Lee;Jun-Suk Rho;Ah-Young Choi;Sin-Sil Kim;Seul-Rin Lee;Jong-Hwan Park;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • The fine particulate structure of biochar limits its use as a heavy metal adsorbent, and makes separation of the biochar from the solution technically challenging, thereby reducing recovery of the heavy metals. To address this issue, this study prepared biochar beads under various mixing conditions and investigated their efficiency in removing Pb from aqueous solutions using adsorption models. The biochar beads were produced by mixing alginate and biochar at different ratios: alginate bead (AB), 1% biochar + bead (1-BB), 2.5% biochar + bead (2.5-BB), and 5% biochar + bead (5-BB). The results revealed that the Freundlich isothermal adsorption pattern of the biochar beads to Pb was of the L-type. The highest Langmuir isothermal adsorption capacity (28.736 mg/g) was observed in the 2.5-BB treatment. The dominant mechanism among the kinetic adsorption characteristics of biochar beads for Pb was chemical adsorption. Additionally, the optimal pH range for Pb adsorption was found to be between 4 and 5.5. The highest Pb removal efficiency (97.9%) was achieved when 26.6 g/L of biochar beads were used. These findings suggest that biochar beads are an economical and highly efficient adsorbent that enables separation and recovery of fine biochar particles.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Lead Stabilization in Soil Amended with Lime Waste: An Extended X-ray Absorption Fine Structure (EXAFS) Investigation

  • Lim, Jung Eun;Lee, Sang Soo;Yang, Jae E.;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.443-450
    • /
    • 2014
  • To determine Pb species in soils following the immobilization process, sequential extraction has been used despite the possibility of overestimating Pb species from unintended reactions during chemical extraction. Meanwhile, the application of extended X-ray absorption fine structure (EXAFS) has been shown to provide a more precise result than chemical extraction. In this study, the immobilization of Pb in contaminated soils treated with liming materials such as oyster shell (OS) or eggshell (ES) was evaluated with thermodynamic modelling and EXAFS analysis. Thermodynamic modelling by visual MINTEQ predicted the precipitation of $Pb(OH)_2$ in OS and ES treated soils. In particular, the values of saturation index (SI) for $Pb(OH)_2$ in OS (SI=0.286) and ES (SI=0.453) treated soils were greater than in the control soil (SI=0.281). Linear combination fitting (LCF) analysis confirmed the presence of $C_{12}H_{10}O_{14}Pb_3$ (lead citrate, 44.7%) by citric acid from plant root, Pb-gibbsite (Pb adsorbed gibbsite, 26.4%), and Pb-kaolinite (Pb adsorbed kaolinite, 20.3%) in the control soil. On the other hand, $Pb(OH)_2$ (16.8%), Pb-gibbsite (39.3%), and Pb-kaolinite (25.6%) were observed in the OS treated soil and $Pb(OH)_2$ (55.2%) and Pb-gibbsite (33.8%) were also confirmed in the ES treated soil. Our results indicate that the treatment with OS and ES immobilizes Pb by adsorption of Pb onto the soil minerals as a result of the increase in soil negative charge and the formation of stable $Pb(OH)_2$ under high pH condition of soils.

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water (리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용)

  • Kim Eunji;Kim Naeun;Park Juyeong;Lee Heuiyun;Yoon Kwangsuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Evaluation of Growth Characteristics and Lead Uptake of Lettuce under different application levels of Bottom Ash (저회의 시용수준에 따른 상추의 생육 및 납 흡수 특성 평가)

  • Cho, Han-Na;Lee, Seung-Gyu;Kim, So-Hui;Yun, Jin-Ju;Park, Jae-Hyuk;Cho, Ju-Sik;Kang, Se-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2022
  • BACKGROUND: Most of the bottom ash(BA) from wood pellet-based thermal power plants that is not recycled is placed into landfill. BA has a function and structure similar to biochar. Hence, BA is classified as waste, but, it is predicted that BA can be used agricultural utilization. METHODS AND RESULTS: To investigate the effect of BA application on lettuce, growth characteristics and Pb contents were examined with BA application levels(0, 1, 2, 3 and 4 g/L), respectively, in hydroponic cultivation with Pb solution. Irrespective with BA application levels, the length, leaf number and fresh weight of lettuce in BA treatments were increased by 84.3~120, 36.2~39.0, and 215~322%, respectively, compared to the BA-0 treatment. The groups with BA treatments, Pb in the nutrient solution was adsorbed to the BA due to the surface area and functional groups of the BA, and the lettuce growth was maintained more smoothly than in the BA-0 treatment. BA application is considered to have created a favorable environment for lettuce growth in hydroponic cultivation with Pb solution. CONCLUSION(S): Although direct comparing the removal effect of heavy metal between BA and biochar is not present, the BA application in contaminated area suggested a significant meaning on the recycling waste, and increasing potential crop productivity by immobilizing heavy metal.