• Title/Summary/Keyword: Bioceramic

Search Result 71, Processing Time 0.026 seconds

Quality Improvement of Oriental Melon and Watermelon Using Bioceramics (바이오 세라믹을 이용한 수박ㆍ참외의 품질 향상에 관한 연구)

  • 송현갑;유영선;이건중
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.89-97
    • /
    • 1996
  • Oriental melon and watermelon plants were cultivated in the soil treated with bioceramics in a greenhouse during summer season from June 1st to August 20th, 1995. Two application methods were employed, one was a mixed treatment of soil and bioceramics, and the other was a spray treatment of bioceramic solution on the stems and leaves. And two types of bioceramics were also stopped by five levels. In order to analyze the bioceramic effect on oriental melon and watermelon, the growth rate of stems, leaves and fruits were measured in the greenhouse. After harvest, the sweetness of fruits was measured and the freshness of fruits based on the storage period was tested by human taste and smell sense. The results are summarized as follows. 1. The growth rates of stems, leaves and fruits of oriental melon and watermelon were the largest in the bioceramic treatment of No. 3. 2. The density of oriental melon and watermelon was the largest in the bioceramic treatment of No. 3 and No. 2 respectively. 3. The Brix number of watermelon was 10.6 in non-bioceramic treatment and 11.5 in the bioceramic treatment of No. 2, and that of oriental melon was 8.6 in non-bioceramic treatment and 12.3 in the bioceramic treatment of No. 2. 4. The storage duration of watermelon treated with bioceramics was about 50 days in the condition of the ambient temperature of 25-3$0^{\circ}C$.

  • PDF

Osteogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Bioceramic-Poly D,L-Lactic-co-Glycolic Acid (PLGA) Scaffold (Bioceramic-Poly D,L-Lactic-co-Glycolic Acid(PLGA) Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 골 형성)

  • Kang, Yu-Mi;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.87-98
    • /
    • 2011
  • The present experiment was performed to evaluate the osteogenic differentiation of human adipose tissue derived mesenchymal stem cells (ATMSCs) seeded in bioceramic-poly D,L-latic-co-glycolic acid (PLGA) scaffold. Osteogenic differentiation of ATMSCs were induced using the osteogenic induction (OI) medium. ATMSCs were cultured with OI medium during 28 days in well plate. The proliferation of ATMSCs in OI medium group was significantly increased for 14 days of plate culture but slowed after 21 days. On the other hand, proliferation in the control group showed constant increase for 28 days of culturing. The alkaline phosphatase (ALP) activity of ATMSCs in OI medium group increased during the 21 days of culture but decreased on 28 days. However, in control group ALP activity of ATMSCs was continuously decreased as time goes. Nodule was observed at 21 days of culture in OI medium group and confirmed accumulation of calcium in cell by alizarin red staining. ATMSCs were seeded in PLGA scaffold or in Bioceramic-PLGA scaffold, and cultured with OI medium. ALP activity of ATMSCs by osteoblast differentiation in each scaffold increased on 21 days of culture and decreased rapidly on 28 days. ALP activity of ATMSCs was increased highly in Bioceramic-PLGA scaffold compared to PLGA scaffold on 21 days of culturing. SEM-EDS analysis demonstrated that calcium and phosphate content and Ca/P ratio in Bioceramic-PLGA scaffold increased higher than in PLGA scaffold. Biodegradability of scaffold at 56 days after implantation showed that Bioceramic-PLGA scaffold was more biodegradable than PLGA scaffold. The results demonstrated that the differentiation of ATMSCs to osteoblast were more effective in scaffold culture than well plate culture. Bioceramic increased cell adhesion rate on scaffold and ALP activity by osteoblast differentiation. Also, bioceramic was considered to increase the calcium and phosphate in scaffold when ATMSCs was mineralized by osteogenic differentiation. Bioceramic-PLGA scaffold enhanced the osteogenesis of seeded ATMSCs compared to PLGA scaffold.

Effects of Subatrates Supplemented with Bioceramic. Crushed Shell and Elvanite on the Growth of Watermelon, Cucumber and Tomato Seedlings. (바이오세라믹, 패화석 및 맥반석의 혼입처리가 수박, 오이 및 토마토의 유묘성장에 미치는 영향)

  • 박순기;김홍기;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of cucumber, watermelon and tomato. The seedlings were grown in pots filled with substrates of bioceramic podwers, crushed shell and elvanites. The growth of cucumber seedlings in terms of plant height, stem diameter, leaf width, leaf area, plant fresh and dry weight was promoted by adding the bioceramic. powder (1 to 2g/kg), crushed shells (20 to 80g/kg) or elvanites (20 to 80g/kg). Watermelon seedlings in terms of plant height, number of leaves and leaf area were greater than those of the control by adding bioceramics (1 to 2g/kg). Plant height was also promoted by the adding of bioceramic power from 16 days after treatment. But leaf area was increased from 8 days after treatment, while stem diameter was not affected. Watermelon seedlings were also influenced by adding curshed shells (20 to 80g/kg) and elvanites (20 to 40g/kg) into each substrate. The growth of characteristics of tomato seedlings were promoted by adding 1 to 3g/kg of bioceramics, 10 to 80g/kg of crushed shell or 20 to 40g/kg of elvanites, respectively. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by crushed shells and elvanites suppemented into substrate.

  • PDF

Effects of Substrates Supplemented with Crushed Shell, Elvanite and bioceramic on the Growth of Rice(Oryza sativa L.) (패화석, 맥반석 및 바이오세라믹의 혼입처리 벼의 생육에 미치는 영향)

  • 박순기;김홍기;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of rices. The rice seedlings were grown in pots filled with substrates supplemented with bioceramic podwers, crushed shells and elvanites. The growth of rice seedlings in terms of plant height, stem diameter, root length and leaf width, plant fresh and dry weight was promoted by adding the bioceramic powders (2 to 3g/kg), crushed shells (10g/kg) or elvanites (20 to 40g/kg). Plant height was also promoted by the adding of bioceramic powder from 16 days after treatment, whereas crushed shells and elvanites from 10 days after treatment. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by the crushed shells and elvanites supplemented into each substrate. In the field, plant growth in terms of plant height, leaf length and leaf width were also influenced by crushed shells and elvanites at 74 days after treatment. The growth of rices in terms of tiller number, spikelets, panicles and spikelets/panicle was incresed by adding the crushed shells and elvanites from 100 to 200g per m2.

  • PDF

Effects of Bioceramic Powder in the Nutrient Solution and Foliar Spray on the Growth and Fruit Quality of Aeroponically Grown Tomato (바이오세라믹 분말의 엽면살포와 배양액내 처리가 분무경재배 토마토의 생장과 과실품질에 미치는 영향)

  • 이정현;이범선;정순주
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.50-56
    • /
    • 1996
  • This experiment was carried out to investigate the effects of new material, bioceramic powder in the nutrient solution(0.02%) and foliar spray(0.2%) on the growth and fruit quality of aeroponically grown tomato(Lycopersicon esculentum MILL. cv. Seokwang). Plant height was lowered, but root growth was increased both treatment of bioceramic powder into the nutrient solution and foliar spray. Cluster growth of tomato plants increased up to 14% over than that of control in the plot of foliar spray with bioceramic powder. Total plant dry weight also increased when bioceramic powder was treated both into the nutrient solution and foliar spray. T/R ratio was reduced by the treatment of bioceramic powder, but NAR and RGR showed the highest in the plot of foliar spray treated with 0.2% bioceramic powder than that of the other plots. Cumulative fruit fresh and dry weight were reduced when bioceramic powder was treated into nutrient solution but foliar spray produced more cumulative fruit fresh and dry weight than that of control. It was shown that treatment of bioceramic powder into the nutrient solution and foliar spray could be improved sugar degree without reducing fruit yields.

  • PDF

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics

  • Sahin, Yesim Muge;Orman, Zeynep;Yucel, Sevil
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2018
  • In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.

Hybrid Coextrusion and Lamination Process for Macrochanneled Bioceramic Scaffolds

  • Koh, Young-Hag;Bae, Chang-Jun;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.497-502
    • /
    • 2004
  • A hybrid coextrusion and lamination process has been developed to fabricate macrochanneled bioceramic scaffolds. This process was mainly composed of three steps (i.e., coextrusion of thermoplastic compound, lamination, and thermal treatment), forming unique pore channels in dense bioceramic body. Pore channels were formed by removing carbon black material, while calcium phosphate or Tetragonal Zirconia Polycrystals (TZP) with a calcium phosphate coating layer were used as dense body. Two kinds of pore structures were fabricated; that is, the pore channels were formed in uni- or three-directional array. Such macrochanneled bioceramic scaffolds exhibited the precisely controlled pore structure (pore size, porosity, and interconnection), offering excellent mechanical properties and cellular responses.

Flow characteristics and alkalinity of novel bioceramic root canal sealers

  • Anastasios Katakidis;Konstantinos Sidiropoulos;Elisabeth Koulaouzidou;Christos Gogos;Nikolaos Economides
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.42.1-42.9
    • /
    • 2020
  • Objective: This study aimed to examine the physical properties (pH and flow) of 2 novel bioceramic sealers. Materials and Methods: The tested sealers were a calcium hydroxide sealer (Sealapex) and 2 bioceramic sealers (BioRoot RCS and TotalFill BC Sealer). Flow measurements were conducted according to ISO 6876/2012, with a press method of 0.05 mL of sealer. The pH of fresh samples was tested immediately after manipulation, while set samples were stored for 3 times the recommended setting time. The predetermined time intervals ranged from 3 minutes to 24 hours for fresh samples and from 10 minutes to 7 days and 4 weeks for the set samples. Analysis of variance was performed, with p = 0.05 considered indicating significance. Results: The mean flow values were 26.99 mm for BioRoot, 28.19 for Sealapex, and 30.8 mm for TotalFill BC Sealer, satisfying the ISO standard. In the set samples, BioRoot RCS had higher pH values at 24 hours to 1 week after immersion in distilled water. At 2 weeks, both bioceramic sealers had similar pH values, greater than that of Sealapex. In the fresh samples, the bioceramic sealers had significantly higher initial pH values than Sealapex (p < 0.05). At 24 hours post-immersion, all sealers showed an alkaline pH, with the highest pH observed for TotalFill. Conclusions: The TotalFill BC Sealer demonstrated the highest flow. The bioceramic sealers initially presented higher alkaline activity than the polymeric calcium hydroxide sealer. However, at 3 and 4 weeks post-immersion, all sealers had similar pH values.

The Immobilization Characteristics of Thiobacillus sp. IW (Thiobacillus sp. IW의 고정화특성에 관한 연구)

  • 김성미;오광중김동욱
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.649-653
    • /
    • 1996
  • Imnmobilization characteristics of Thiobacillus sp. IW which oxidizes sulfur compound was studied to use the bacterium in odor controlling equipment for the future. The optimum growth conditions for Thiobacillus sp. IW were pH7, $30^{\circ}C$ and the generation time was 38min, which was extremely fast compared with other sulfur oxidizing bacteria. Optimum growth conditions in activated carbon as a carrier was pH5, $35^{\circ}C$ and those in bioceramics was pH 7∼8, $35^{\circ}C$. Cell growth immobilized in bioceramics was more stable in pH, temperature change than that immobilized in activated carbon and total number of cells in bioceramics were also higher. Based on these results, the bioceramics is thought to be better carrier in immobilization of Thiobacillus sp. IW.

  • PDF

Enhancement of Oxygen and Moisture Permeability with Illite-Containing Polyethylene Film

  • Seong, Dong Min;Lee, Hyesun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.601-605
    • /
    • 2019
  • This work reports the preparation of ceramic hybrid films with illite-polyethylene composites analyzed as a function of concentration of added illite in polyethylene. The enhancement of oxygen and water-vapor transmission rate of illite-polyethylene film was evaluated to determine its influence on the freshness in fruit packaging. Particle size of illite materials was controlled in the range of 1~10 ㎛ and then mixed with LDPE to form the masterbatch. Ceramic hybrid films were prepared through a blown film making process. To determine the dispersity and abundancy of illite materials in the polyethylene matrix, various characterizations of illite-PE hybrid masterbatch and films were performed using SEM, TGA, and FT-IR. The oxygen and water-vapor transmission rate of illite-polyethylene film was found to be two times higher than that of LDPE film.